Deep learning scheme for character prediction with position-free touch screen-based Braille input method View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2020-09-19

AUTHORS

Sana Shokat, Rabia Riaz, Sanam Shahla Rizvi, Abdul Majid Abbasi, Adeel Ahmed Abbasi, Se Jin Kwon

ABSTRACT

Smart devices are effective in helping people with impairments, overcome their disabilities, and improve their living standards. Braille is a popular method used for communication by visually impaired people. Touch screen smart devices can be used to take Braille input and instantaneously convert it into a natural language. Most of these schemes require location-specific input that is difficult for visually impaired users. In this study, a position-free accessible touchscreen-based Braille input algorithm is designed and implemented for visually impaired people. It aims to place the least burden on the user, who is only required to tap those dots that are needed for a specific character. The user has input English Braille Grade 1 data (a–z) using a newly designed application. A total dataset comprised of 1258 images was collected. The classification was performed using deep learning techniques, out of which 70%–30% was used for training and validation purposes. The proposed method was thoroughly evaluated on a dataset collected from visually impaired people using Deep Learning (DL) techniques. The results obtained from deep learning techniques are compared with classical machine learning techniques like Naïve Bayes (NB), Decision Trees (DT), SVM, and KNN. We divided the multi-class into two categories, i.e., Category-A (a–m) and Category-B (n–z). The performance was evaluated using Sensitivity, Specificity, Positive Predicted Value (PPV), Negative Predicted Value (NPV), False Positive Rate (FPV), Total Accuracy (TA), and Area under the Curve (AUC). GoogLeNet Model, followed by the Sequential model, SVM, DT, KNN, and NB achieved the highest performance. The results prove that the proposed Braille input method for touch screen devices is more effective and that the deep learning method can predict the user's input with high accuracy. More... »

PAGES

41

References to SciGraph publications

  • 2018-01-08. Exploring the support for high performance applications in the container runtime environment in HUMAN-CENTRIC COMPUTING AND INFORMATION SCIENCES
  • 2020-04-11. An improved object detection algorithm based on multi-scaled and deformable convolutional neural networks in HUMAN-CENTRIC COMPUTING AND INFORMATION SCIENCES
  • 2017-05-16. BrailleTap: Developing a Calculator Based on Braille Using Tap Gestures in UNIVERSAL ACCESS IN HUMAN–COMPUTER INTERACTION. DESIGNING NOVEL INTERACTIONS
  • 2017-01-02. Generating descriptive model for student dropout: a review of clustering approach in HUMAN-CENTRIC COMPUTING AND INFORMATION SCIENCES
  • 2020-01-02. Developing an online hate classifier for multiple social media platforms in HUMAN-CENTRIC COMPUTING AND INFORMATION SCIENCES
  • 2020-05-28. A survey on speech synthesis techniques in Indian languages in MULTIMEDIA SYSTEMS
  • 2019-07-04. Rule based intelligent system verbalizing mathematical notation in MULTIMEDIA TOOLS AND APPLICATIONS
  • 2020-04-19. Speech and web-based technology to enhance education for pupils with visual impairment in JOURNAL ON MULTIMODAL USER INTERFACES
  • 2019-02-01. Parameter investigation of support vector machine classifier with kernel functions in KNOWLEDGE AND INFORMATION SYSTEMS
  • 2013-01-17. Publishing and discovering context-dependent services in HUMAN-CENTRIC COMPUTING AND INFORMATION SCIENCES
  • 2011. BrailleTouch: Mobile Texting for the Visually Impaired in UNIVERSAL ACCESS IN HUMAN-COMPUTER INTERACTION. CONTEXT DIVERSITY
  • 2014. Visualizing and Understanding Convolutional Networks in COMPUTER VISION – ECCV 2014
  • 2014. kNN Algorithm with Data-Driven k Value in ADVANCED DATA MINING AND APPLICATIONS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s13673-020-00246-6

    DOI

    http://dx.doi.org/10.1186/s13673-020-00246-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1130994258


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Computer Science and Information Technology, University of Azad Jammu and Kashmir, 13100, Muzaffarabad, Pakistan", 
              "id": "http://www.grid.ac/institutes/grid.413058.b", 
              "name": [
                "Department of Computer Science and Information Technology, University of Azad Jammu and Kashmir, 13100, Muzaffarabad, Pakistan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shokat", 
            "givenName": "Sana", 
            "id": "sg:person.014572451334.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014572451334.12"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Computer Science and Information Technology, University of Azad Jammu and Kashmir, 13100, Muzaffarabad, Pakistan", 
              "id": "http://www.grid.ac/institutes/grid.413058.b", 
              "name": [
                "Department of Computer Science and Information Technology, University of Azad Jammu and Kashmir, 13100, Muzaffarabad, Pakistan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Riaz", 
            "givenName": "Rabia", 
            "id": "sg:person.010176042450.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010176042450.29"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Reptor Interactive (Pty) Ltd, Eco Boulvard. Witch Hazel Ave, 0157, Centurion, South Africa", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Reptor Interactive (Pty) Ltd, Eco Boulvard. Witch Hazel Ave, 0157, Centurion, South Africa"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rizvi", 
            "givenName": "Sanam Shahla", 
            "id": "sg:person.0660762753.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0660762753.33"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Computer Science and Information Technology, University of Azad Jammu and Kashmir, 13100, Muzaffarabad, Pakistan", 
              "id": "http://www.grid.ac/institutes/grid.413058.b", 
              "name": [
                "Department of Computer Science and Information Technology, University of Azad Jammu and Kashmir, 13100, Muzaffarabad, Pakistan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Abbasi", 
            "givenName": "Abdul Majid", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Computer Science and Information Technology, University of Azad Jammu and Kashmir, 13100, Muzaffarabad, Pakistan", 
              "id": "http://www.grid.ac/institutes/grid.413058.b", 
              "name": [
                "Department of Computer Science and Information Technology, University of Azad Jammu and Kashmir, 13100, Muzaffarabad, Pakistan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Abbasi", 
            "givenName": "Adeel Ahmed", 
            "id": "sg:person.011170217543.72", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011170217543.72"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Dept. of Computer Engineering, Kangwon National University, 346 Joongang-ro, 25913, Samcheok, Gangwon-do, South Korea", 
              "id": "http://www.grid.ac/institutes/grid.412010.6", 
              "name": [
                "Dept. of Computer Engineering, Kangwon National University, 346 Joongang-ro, 25913, Samcheok, Gangwon-do, South Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kwon", 
            "givenName": "Se Jin", 
            "id": "sg:person.010730424071.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010730424071.01"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1186/s13673-019-0205-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1123776950", 
              "https://doi.org/10.1186/s13673-019-0205-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10115-019-01335-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1111840881", 
              "https://doi.org/10.1007/s10115-019-01335-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-10590-1_53", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032233097", 
              "https://doi.org/10.1007/978-3-319-10590-1_53"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13673-017-0124-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100180843", 
              "https://doi.org/10.1186/s13673-017-0124-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-58703-5_16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086691435", 
              "https://doi.org/10.1007/978-3-319-58703-5_16"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/2192-1962-3-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043535843", 
              "https://doi.org/10.1186/2192-1962-3-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13673-020-00219-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1126624000", 
              "https://doi.org/10.1186/s13673-020-00219-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13673-016-0083-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022073322", 
              "https://doi.org/10.1186/s13673-016-0083-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00530-020-00659-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1127988146", 
              "https://doi.org/10.1007/s00530-020-00659-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11042-019-07889-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1117764724", 
              "https://doi.org/10.1007/s11042-019-07889-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-14717-8_39", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038137470", 
              "https://doi.org/10.1007/978-3-319-14717-8_39"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12193-020-00323-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1126808143", 
              "https://doi.org/10.1007/s12193-020-00323-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-21666-4_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049036604", 
              "https://doi.org/10.1007/978-3-642-21666-4_3"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2020-09-19", 
        "datePublishedReg": "2020-09-19", 
        "description": "Smart devices are effective in helping people with impairments, overcome their disabilities, and improve their living standards. Braille is a popular method used for communication by visually impaired people. Touch screen smart devices can be used to take Braille input and instantaneously convert it into a natural language. Most of these schemes require location-specific input that is difficult for visually impaired users. In this study, a position-free accessible touchscreen-based Braille input algorithm is designed and implemented for visually impaired people. It aims to place the least burden on the user, who is only required to tap those dots that are needed for a specific character. The user has input English Braille Grade 1 data (a\u2013z) using a newly designed application. A total dataset comprised of 1258 images was collected. The classification was performed using deep learning techniques, out of which 70%\u201330% was used for training and validation purposes. The proposed method was thoroughly evaluated on a dataset collected from visually impaired people using Deep Learning (DL) techniques. The results obtained from deep learning techniques are compared with classical machine learning techniques like Na\u00efve Bayes (NB), Decision Trees (DT), SVM, and KNN. We divided the multi-class into two categories, i.e., Category-A (a\u2013m) and Category-B (n\u2013z). The performance was evaluated using Sensitivity, Specificity, Positive Predicted Value (PPV), Negative Predicted Value (NPV), False Positive Rate (FPV), Total Accuracy (TA), and Area under the Curve (AUC). GoogLeNet Model, followed by the Sequential model, SVM, DT, KNN, and NB achieved the highest performance. The results prove that the proposed Braille input method for touch screen devices is more effective and that the deep learning method can predict the user's input with high accuracy.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s13673-020-00246-6", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136381", 
            "issn": [
              "2192-1962"
            ], 
            "name": "Human-centric Computing and Information Sciences", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "10"
          }
        ], 
        "keywords": [
          "deep learning techniques", 
          "Braille input method", 
          "learning techniques", 
          "Na\u00efve Bayes", 
          "Negative Predicted Value", 
          "decision tree", 
          "smart devices", 
          "touch screen smart devices", 
          "input method", 
          "false positive rate", 
          "deep learning scheme", 
          "deep learning methods", 
          "touch screen devices", 
          "classical machine", 
          "GoogLeNet model", 
          "user input", 
          "natural language", 
          "learning scheme", 
          "character prediction", 
          "learning methods", 
          "Braille input", 
          "total accuracy", 
          "screen devices", 
          "users", 
          "input algorithm", 
          "SVM", 
          "high performance", 
          "high accuracy", 
          "KNN", 
          "sequential model", 
          "popular method", 
          "dataset", 
          "least burden", 
          "positive rate", 
          "validation purposes", 
          "scheme", 
          "accuracy", 
          "total dataset", 
          "input", 
          "Bayes", 
          "devices", 
          "machine", 
          "algorithm", 
          "technique", 
          "performance", 
          "predicted values", 
          "images", 
          "Braille", 
          "classification", 
          "communication", 
          "language", 
          "method", 
          "model", 
          "applications", 
          "positives", 
          "trees", 
          "people", 
          "training", 
          "categories", 
          "prediction", 
          "standards", 
          "data", 
          "results", 
          "living standards", 
          "purpose", 
          "specific character", 
          "area", 
          "burden", 
          "values", 
          "character", 
          "curves", 
          "rate", 
          "dots", 
          "study", 
          "specificity", 
          "sensitivity", 
          "disability", 
          "impairment"
        ], 
        "name": "Deep learning scheme for character prediction with position-free touch screen-based Braille input method", 
        "pagination": "41", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1130994258"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s13673-020-00246-6"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s13673-020-00246-6", 
          "https://app.dimensions.ai/details/publication/pub.1130994258"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-11-24T21:06", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_844.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s13673-020-00246-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13673-020-00246-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13673-020-00246-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13673-020-00246-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13673-020-00246-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    226 TRIPLES      21 PREDICATES      115 URIs      94 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s13673-020-00246-6 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N9e850aeb0e2a49af835fa3ad55b8e8c2
    4 schema:citation sg:pub.10.1007/978-3-319-10590-1_53
    5 sg:pub.10.1007/978-3-319-14717-8_39
    6 sg:pub.10.1007/978-3-319-58703-5_16
    7 sg:pub.10.1007/978-3-642-21666-4_3
    8 sg:pub.10.1007/s00530-020-00659-4
    9 sg:pub.10.1007/s10115-019-01335-4
    10 sg:pub.10.1007/s11042-019-07889-3
    11 sg:pub.10.1007/s12193-020-00323-1
    12 sg:pub.10.1186/2192-1962-3-1
    13 sg:pub.10.1186/s13673-016-0083-0
    14 sg:pub.10.1186/s13673-017-0124-3
    15 sg:pub.10.1186/s13673-019-0205-6
    16 sg:pub.10.1186/s13673-020-00219-9
    17 schema:datePublished 2020-09-19
    18 schema:datePublishedReg 2020-09-19
    19 schema:description Smart devices are effective in helping people with impairments, overcome their disabilities, and improve their living standards. Braille is a popular method used for communication by visually impaired people. Touch screen smart devices can be used to take Braille input and instantaneously convert it into a natural language. Most of these schemes require location-specific input that is difficult for visually impaired users. In this study, a position-free accessible touchscreen-based Braille input algorithm is designed and implemented for visually impaired people. It aims to place the least burden on the user, who is only required to tap those dots that are needed for a specific character. The user has input English Braille Grade 1 data (a–z) using a newly designed application. A total dataset comprised of 1258 images was collected. The classification was performed using deep learning techniques, out of which 70%–30% was used for training and validation purposes. The proposed method was thoroughly evaluated on a dataset collected from visually impaired people using Deep Learning (DL) techniques. The results obtained from deep learning techniques are compared with classical machine learning techniques like Naïve Bayes (NB), Decision Trees (DT), SVM, and KNN. We divided the multi-class into two categories, i.e., Category-A (a–m) and Category-B (n–z). The performance was evaluated using Sensitivity, Specificity, Positive Predicted Value (PPV), Negative Predicted Value (NPV), False Positive Rate (FPV), Total Accuracy (TA), and Area under the Curve (AUC). GoogLeNet Model, followed by the Sequential model, SVM, DT, KNN, and NB achieved the highest performance. The results prove that the proposed Braille input method for touch screen devices is more effective and that the deep learning method can predict the user's input with high accuracy.
    20 schema:genre article
    21 schema:isAccessibleForFree true
    22 schema:isPartOf Nde22490c67e5463d897e00aeda2eb32c
    23 Ned672cfab3e544979f27c615b210e9eb
    24 sg:journal.1136381
    25 schema:keywords Bayes
    26 Braille
    27 Braille input
    28 Braille input method
    29 GoogLeNet model
    30 KNN
    31 Naïve Bayes
    32 Negative Predicted Value
    33 SVM
    34 accuracy
    35 algorithm
    36 applications
    37 area
    38 burden
    39 categories
    40 character
    41 character prediction
    42 classical machine
    43 classification
    44 communication
    45 curves
    46 data
    47 dataset
    48 decision tree
    49 deep learning methods
    50 deep learning scheme
    51 deep learning techniques
    52 devices
    53 disability
    54 dots
    55 false positive rate
    56 high accuracy
    57 high performance
    58 images
    59 impairment
    60 input
    61 input algorithm
    62 input method
    63 language
    64 learning methods
    65 learning scheme
    66 learning techniques
    67 least burden
    68 living standards
    69 machine
    70 method
    71 model
    72 natural language
    73 people
    74 performance
    75 popular method
    76 positive rate
    77 positives
    78 predicted values
    79 prediction
    80 purpose
    81 rate
    82 results
    83 scheme
    84 screen devices
    85 sensitivity
    86 sequential model
    87 smart devices
    88 specific character
    89 specificity
    90 standards
    91 study
    92 technique
    93 total accuracy
    94 total dataset
    95 touch screen devices
    96 touch screen smart devices
    97 training
    98 trees
    99 user input
    100 users
    101 validation purposes
    102 values
    103 schema:name Deep learning scheme for character prediction with position-free touch screen-based Braille input method
    104 schema:pagination 41
    105 schema:productId Na3ce0c56adc348d38fbd14a46ec811c9
    106 Nc0db65d8dd68442cbc7f963c162abe98
    107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1130994258
    108 https://doi.org/10.1186/s13673-020-00246-6
    109 schema:sdDatePublished 2022-11-24T21:06
    110 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    111 schema:sdPublisher N67bf053494fc4ef5ae71b586a8b8ec38
    112 schema:url https://doi.org/10.1186/s13673-020-00246-6
    113 sgo:license sg:explorer/license/
    114 sgo:sdDataset articles
    115 rdf:type schema:ScholarlyArticle
    116 N43e3a9c045e34cc580862155b202cfb5 rdf:first N6bbc7896671847629d564830b3d35f84
    117 rdf:rest N8602548696f944daacab12d17ae552ac
    118 N67bf053494fc4ef5ae71b586a8b8ec38 schema:name Springer Nature - SN SciGraph project
    119 rdf:type schema:Organization
    120 N6bbc7896671847629d564830b3d35f84 schema:affiliation grid-institutes:grid.413058.b
    121 schema:familyName Abbasi
    122 schema:givenName Abdul Majid
    123 rdf:type schema:Person
    124 N8602548696f944daacab12d17ae552ac rdf:first sg:person.011170217543.72
    125 rdf:rest Nb22b565f9f2146b999c51e587aa9423a
    126 N9400f2b3961b4f8288628d9907a0d0de rdf:first sg:person.010176042450.29
    127 rdf:rest Nfcadb7ae0c434eb2a70562e9efe01654
    128 N9e850aeb0e2a49af835fa3ad55b8e8c2 rdf:first sg:person.014572451334.12
    129 rdf:rest N9400f2b3961b4f8288628d9907a0d0de
    130 Na3ce0c56adc348d38fbd14a46ec811c9 schema:name doi
    131 schema:value 10.1186/s13673-020-00246-6
    132 rdf:type schema:PropertyValue
    133 Nb22b565f9f2146b999c51e587aa9423a rdf:first sg:person.010730424071.01
    134 rdf:rest rdf:nil
    135 Nc0db65d8dd68442cbc7f963c162abe98 schema:name dimensions_id
    136 schema:value pub.1130994258
    137 rdf:type schema:PropertyValue
    138 Nde22490c67e5463d897e00aeda2eb32c schema:issueNumber 1
    139 rdf:type schema:PublicationIssue
    140 Ned672cfab3e544979f27c615b210e9eb schema:volumeNumber 10
    141 rdf:type schema:PublicationVolume
    142 Nfcadb7ae0c434eb2a70562e9efe01654 rdf:first sg:person.0660762753.33
    143 rdf:rest N43e3a9c045e34cc580862155b202cfb5
    144 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    145 schema:name Information and Computing Sciences
    146 rdf:type schema:DefinedTerm
    147 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    148 schema:name Artificial Intelligence and Image Processing
    149 rdf:type schema:DefinedTerm
    150 sg:journal.1136381 schema:issn 2192-1962
    151 schema:name Human-centric Computing and Information Sciences
    152 schema:publisher Springer Nature
    153 rdf:type schema:Periodical
    154 sg:person.010176042450.29 schema:affiliation grid-institutes:grid.413058.b
    155 schema:familyName Riaz
    156 schema:givenName Rabia
    157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010176042450.29
    158 rdf:type schema:Person
    159 sg:person.010730424071.01 schema:affiliation grid-institutes:grid.412010.6
    160 schema:familyName Kwon
    161 schema:givenName Se Jin
    162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010730424071.01
    163 rdf:type schema:Person
    164 sg:person.011170217543.72 schema:affiliation grid-institutes:grid.413058.b
    165 schema:familyName Abbasi
    166 schema:givenName Adeel Ahmed
    167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011170217543.72
    168 rdf:type schema:Person
    169 sg:person.014572451334.12 schema:affiliation grid-institutes:grid.413058.b
    170 schema:familyName Shokat
    171 schema:givenName Sana
    172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014572451334.12
    173 rdf:type schema:Person
    174 sg:person.0660762753.33 schema:affiliation grid-institutes:None
    175 schema:familyName Rizvi
    176 schema:givenName Sanam Shahla
    177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0660762753.33
    178 rdf:type schema:Person
    179 sg:pub.10.1007/978-3-319-10590-1_53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032233097
    180 https://doi.org/10.1007/978-3-319-10590-1_53
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1007/978-3-319-14717-8_39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038137470
    183 https://doi.org/10.1007/978-3-319-14717-8_39
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1007/978-3-319-58703-5_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086691435
    186 https://doi.org/10.1007/978-3-319-58703-5_16
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1007/978-3-642-21666-4_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049036604
    189 https://doi.org/10.1007/978-3-642-21666-4_3
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1007/s00530-020-00659-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1127988146
    192 https://doi.org/10.1007/s00530-020-00659-4
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1007/s10115-019-01335-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111840881
    195 https://doi.org/10.1007/s10115-019-01335-4
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1007/s11042-019-07889-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1117764724
    198 https://doi.org/10.1007/s11042-019-07889-3
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1007/s12193-020-00323-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1126808143
    201 https://doi.org/10.1007/s12193-020-00323-1
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1186/2192-1962-3-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043535843
    204 https://doi.org/10.1186/2192-1962-3-1
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1186/s13673-016-0083-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022073322
    207 https://doi.org/10.1186/s13673-016-0083-0
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1186/s13673-017-0124-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100180843
    210 https://doi.org/10.1186/s13673-017-0124-3
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1186/s13673-019-0205-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1123776950
    213 https://doi.org/10.1186/s13673-019-0205-6
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1186/s13673-020-00219-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1126624000
    216 https://doi.org/10.1186/s13673-020-00219-9
    217 rdf:type schema:CreativeWork
    218 grid-institutes:None schema:alternateName Reptor Interactive (Pty) Ltd, Eco Boulvard. Witch Hazel Ave, 0157, Centurion, South Africa
    219 schema:name Reptor Interactive (Pty) Ltd, Eco Boulvard. Witch Hazel Ave, 0157, Centurion, South Africa
    220 rdf:type schema:Organization
    221 grid-institutes:grid.412010.6 schema:alternateName Dept. of Computer Engineering, Kangwon National University, 346 Joongang-ro, 25913, Samcheok, Gangwon-do, South Korea
    222 schema:name Dept. of Computer Engineering, Kangwon National University, 346 Joongang-ro, 25913, Samcheok, Gangwon-do, South Korea
    223 rdf:type schema:Organization
    224 grid-institutes:grid.413058.b schema:alternateName Department of Computer Science and Information Technology, University of Azad Jammu and Kashmir, 13100, Muzaffarabad, Pakistan
    225 schema:name Department of Computer Science and Information Technology, University of Azad Jammu and Kashmir, 13100, Muzaffarabad, Pakistan
    226 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...