Hybrid case-base maintenance approach for modeling large scale case-based reasoning systems View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-12

AUTHORS

Malik Jahan Khan, Hussain Hayat, Irfan Awan

ABSTRACT

Case-based reasoning (CBR) is a nature inspired paradigm of machine learning capable to continuously learn from the past experience. Each newly solved problem and its corresponding solution is retained in its central knowledge repository called case-base. Withρ the regular use of the CBR system, the case-base cardinality keeps on growing. It results into performance bottleneck as the number of comparisons of each new problem with the existing problems also increases with the case-base growth. To address this performance bottleneck, different case-base maintenance (CBM) strategies are used so that the growth of the case-base is controlled without compromising on the utility of knowledge maintained in the case-base. This research work presents a hybrid case-base maintenance approach which equally utilizes the benefits of case addition as well as case deletion strategies to maintain the case-base in online and offline modes respectively. The proposed maintenance method has been evaluated using a simulated model of autonomic forest fire application and its performance has been compared with the existing approaches on a large case-base of the simulated case study. More... »

PAGES

9

References to SciGraph publications

  • 2017-12. Graph clustering-based discretization of splitting and merging methods (GraphS and GraphM) in HUMAN-CENTRIC COMPUTING AND INFORMATION SCIENCES
  • 2006-06. An empirical study of predicting software faults with case-based reasoning in SOFTWARE QUALITY JOURNAL
  • 1994. Massively parallel case-based reasoning with probabilistic similarity metrics in TOPICS IN CASE-BASED REASONING
  • 1999-10-29. Footprint-Based Retrieval in CASE-BASED REASONING RESEARCH AND DEVELOPMENT
  • 1999-10-29. A Case Retention Policy based on Detrimental Retrieval in CASE-BASED REASONING RESEARCH AND DEVELOPMENT
  • 2018. Research on Personalized Recommendation Case Base and Data Source Based on Case-Based Reasoning in CLOUD COMPUTING AND SECURITY
  • 2011. On Dataset Complexity for Case Base Maintenance in CASE-BASED REASONING RESEARCH AND DEVELOPMENT
  • 2003. Case-Based Reasoning and Software Engineering in MANAGING SOFTWARE ENGINEERING KNOWLEDGE
  • 2016-04. Case-base maintenance with multi-objective evolutionary algorithms in JOURNAL OF INTELLIGENT INFORMATION SYSTEMS
  • 1999-10-29. Building Compact Competent Case-Bases in CASE-BASED REASONING RESEARCH AND DEVELOPMENT
  • 2015. Case Base Maintenance in Preference-Based CBR in CASE-BASED REASONING RESEARCH AND DEVELOPMENT
  • 2013. A Multi-Objective Evolutionary Algorithm Fitness Function for Case-Base Maintenance in CASE-BASED REASONING RESEARCH AND DEVELOPMENT
  • 2003-01-14. Remembering Why to Remember: Performance-Guided Case-Base Maintenance in ADVANCES IN CASE-BASED REASONING
  • 2013. Preference-Based CBR: A Search-Based Problem Solving Framework in CASE-BASED REASONING RESEARCH AND DEVELOPMENT
  • 1996. The utility problem analysed in ADVANCES IN CASE-BASED REASONING
  • 1998. Categorizing case-base maintenance: Dimensions and directions in ADVANCES IN CASE-BASED REASONING
  • 1998. CBR: Strengths and weaknesses in TASKS AND METHODS IN APPLIED ARTIFICIAL INTELLIGENCE
  • 2010. Successful Case-based Reasoning Applications - I in NONE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s13673-019-0171-z

    DOI

    http://dx.doi.org/10.1186/s13673-019-0171-z

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112712532


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Namal College", 
              "id": "https://www.grid.ac/institutes/grid.454328.c", 
              "name": [
                "Department of Computer Science, Namal College, Mianwali, Pakistan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Khan", 
            "givenName": "Malik Jahan", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Namal College", 
              "id": "https://www.grid.ac/institutes/grid.454328.c", 
              "name": [
                "Department of Computer Science, Namal College, Mianwali, Pakistan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hayat", 
            "givenName": "Hussain", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Bradford", 
              "id": "https://www.grid.ac/institutes/grid.6268.a", 
              "name": [
                "School of Electrical Engineering and Computer Science, University of Bradford, Bradford, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Awan", 
            "givenName": "Irfan", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/0004-3702(90)90059-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000664033"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0004-3702(90)90059-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000664033"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/088395198117730", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004285195"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0269888906000646", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004639805"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-05129-0_9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005373143", 
              "https://doi.org/10.1007/978-3-662-05129-0_9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-48508-2_24", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006669129", 
              "https://doi.org/10.1007/3-540-48508-2_24"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-48508-2_24", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006669129", 
              "https://doi.org/10.1007/3-540-48508-2_24"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0056333", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007992722", 
              "https://doi.org/10.1007/bfb0056333"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-64574-8_437", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012004393", 
              "https://doi.org/10.1007/3-540-64574-8_437"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eswa.2013.09.051", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012284636"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-39056-2_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012938660", 
              "https://doi.org/10.1007/978-3-642-39056-2_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-48508-2_20", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013619051", 
              "https://doi.org/10.1007/3-540-48508-2_20"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-48508-2_20", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013619051", 
              "https://doi.org/10.1007/3-540-48508-2_20"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-23291-6_6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014101789", 
              "https://doi.org/10.1007/978-3-642-23291-6_6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eswa.2012.02.063", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018068999"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eswa.2010.11.080", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019492981"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.simpat.2011.08.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021989782"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-48508-2_25", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023342630", 
              "https://doi.org/10.1007/3-540-48508-2_25"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-48508-2_25", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023342630", 
              "https://doi.org/10.1007/3-540-48508-2_25"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-14078-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026672672", 
              "https://doi.org/10.1007/978-3-642-14078-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-14078-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026672672", 
              "https://doi.org/10.1007/978-3-642-14078-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11219-006-7597-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031601770", 
              "https://doi.org/10.1007/s11219-006-7597-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/b978-0-934613-64-4.50052-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034475197"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jcss.2013.03.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037452675"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-44527-7_15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037969634", 
              "https://doi.org/10.1007/3-540-44527-7_15"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-44527-7_15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037969634", 
              "https://doi.org/10.1007/3-540-44527-7_15"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-58330-0_83", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041631409", 
              "https://doi.org/10.1007/3-540-58330-0_83"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0269888900007098", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045245528"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0020625", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047881328", 
              "https://doi.org/10.1007/bfb0020625"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.procs.2014.08.081", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048683443"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10844-015-0378-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048814763", 
              "https://doi.org/10.1007/s10844-015-0378-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10844-015-0378-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048814763", 
              "https://doi.org/10.1007/s10844-015-0378-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0164-1212(00)00005-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049409800"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.knosys.2014.05.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050483380"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-39056-2_16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050862226", 
              "https://doi.org/10.1007/978-3-642-39056-2_16"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-24586-7_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050927972", 
              "https://doi.org/10.1007/978-3-319-24586-7_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1049/iet-sen.2013.0127", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056837210"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tit.1968.1054155", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061646472"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tkde.2008.227", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061661904"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tsmcc.2010.2071862", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061798273"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13673-017-0103-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085919723", 
              "https://doi.org/10.1186/s13673-017-0103-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13673-017-0103-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085919723", 
              "https://doi.org/10.1186/s13673-017-0103-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3745/jips.04.0048", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092566221"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.22489/cinc.2017.134-299", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101807147"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3390/sym10060193", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104326102"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.24963/ijcai.2018/770", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105386928"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-030-00009-7_11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107124526", 
              "https://doi.org/10.1007/978-3-030-00009-7_11"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/3275245.3275263", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107809783"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/3275245.3275263", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107809783"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-12", 
        "datePublishedReg": "2019-12-01", 
        "description": "Case-based reasoning (CBR) is a nature inspired paradigm of machine learning capable to continuously learn from the past experience. Each newly solved problem and its corresponding solution is retained in its central knowledge repository called case-base. With\u03c1 the regular use of the CBR system, the case-base cardinality keeps on growing. It results into performance bottleneck as the number of comparisons of each new problem with the existing problems also increases with the case-base growth. To address this performance bottleneck, different case-base maintenance (CBM) strategies are used so that the growth of the case-base is controlled without compromising on the utility of knowledge maintained in the case-base. This research work presents a hybrid case-base maintenance approach which equally utilizes the benefits of case addition as well as case deletion strategies to maintain the case-base in online and offline modes respectively. The proposed maintenance method has been evaluated using a simulated model of autonomic forest fire application and its performance has been compared with the existing approaches on a large case-base of the simulated case study.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/s13673-019-0171-z", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136381", 
            "issn": [
              "2192-1962", 
              "2192-1962"
            ], 
            "name": "Human-centric Computing and Information Sciences", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "9"
          }
        ], 
        "name": "Hybrid case-base maintenance approach for modeling large scale case-based reasoning systems", 
        "pagination": "9", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "a699d4b296ef3b0455c7a8f9abf32dc69523c7f5e2b24a609688478f53fcf93b"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s13673-019-0171-z"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112712532"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s13673-019-0171-z", 
          "https://app.dimensions.ai/details/publication/pub.1112712532"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T11:43", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000358_0000000358/records_127448_00000011.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1186%2Fs13673-019-0171-z"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13673-019-0171-z'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13673-019-0171-z'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13673-019-0171-z'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13673-019-0171-z'


     

    This table displays all metadata directly associated to this object as RDF triples.

    212 TRIPLES      21 PREDICATES      67 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s13673-019-0171-z schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author Nc6352fc92c5842118e59c21900c4cd2b
    4 schema:citation sg:pub.10.1007/3-540-44527-7_15
    5 sg:pub.10.1007/3-540-48508-2_20
    6 sg:pub.10.1007/3-540-48508-2_24
    7 sg:pub.10.1007/3-540-48508-2_25
    8 sg:pub.10.1007/3-540-58330-0_83
    9 sg:pub.10.1007/3-540-64574-8_437
    10 sg:pub.10.1007/978-3-030-00009-7_11
    11 sg:pub.10.1007/978-3-319-24586-7_1
    12 sg:pub.10.1007/978-3-642-14078-5
    13 sg:pub.10.1007/978-3-642-23291-6_6
    14 sg:pub.10.1007/978-3-642-39056-2_1
    15 sg:pub.10.1007/978-3-642-39056-2_16
    16 sg:pub.10.1007/978-3-662-05129-0_9
    17 sg:pub.10.1007/bfb0020625
    18 sg:pub.10.1007/bfb0056333
    19 sg:pub.10.1007/s10844-015-0378-z
    20 sg:pub.10.1007/s11219-006-7597-z
    21 sg:pub.10.1186/s13673-017-0103-8
    22 https://doi.org/10.1016/0004-3702(90)90059-9
    23 https://doi.org/10.1016/b978-0-934613-64-4.50052-9
    24 https://doi.org/10.1016/j.eswa.2010.11.080
    25 https://doi.org/10.1016/j.eswa.2012.02.063
    26 https://doi.org/10.1016/j.eswa.2013.09.051
    27 https://doi.org/10.1016/j.jcss.2013.03.006
    28 https://doi.org/10.1016/j.knosys.2014.05.014
    29 https://doi.org/10.1016/j.procs.2014.08.081
    30 https://doi.org/10.1016/j.simpat.2011.08.005
    31 https://doi.org/10.1016/s0164-1212(00)00005-4
    32 https://doi.org/10.1017/s0269888900007098
    33 https://doi.org/10.1017/s0269888906000646
    34 https://doi.org/10.1049/iet-sen.2013.0127
    35 https://doi.org/10.1080/088395198117730
    36 https://doi.org/10.1109/tit.1968.1054155
    37 https://doi.org/10.1109/tkde.2008.227
    38 https://doi.org/10.1109/tsmcc.2010.2071862
    39 https://doi.org/10.1145/3275245.3275263
    40 https://doi.org/10.22489/cinc.2017.134-299
    41 https://doi.org/10.24963/ijcai.2018/770
    42 https://doi.org/10.3390/sym10060193
    43 https://doi.org/10.3745/jips.04.0048
    44 schema:datePublished 2019-12
    45 schema:datePublishedReg 2019-12-01
    46 schema:description Case-based reasoning (CBR) is a nature inspired paradigm of machine learning capable to continuously learn from the past experience. Each newly solved problem and its corresponding solution is retained in its central knowledge repository called case-base. Withρ the regular use of the CBR system, the case-base cardinality keeps on growing. It results into performance bottleneck as the number of comparisons of each new problem with the existing problems also increases with the case-base growth. To address this performance bottleneck, different case-base maintenance (CBM) strategies are used so that the growth of the case-base is controlled without compromising on the utility of knowledge maintained in the case-base. This research work presents a hybrid case-base maintenance approach which equally utilizes the benefits of case addition as well as case deletion strategies to maintain the case-base in online and offline modes respectively. The proposed maintenance method has been evaluated using a simulated model of autonomic forest fire application and its performance has been compared with the existing approaches on a large case-base of the simulated case study.
    47 schema:genre research_article
    48 schema:inLanguage en
    49 schema:isAccessibleForFree false
    50 schema:isPartOf N266c1fd6124f47f590fdae7950e03913
    51 Na73d4bf9e68d4d4f909477bbd73bba1e
    52 sg:journal.1136381
    53 schema:name Hybrid case-base maintenance approach for modeling large scale case-based reasoning systems
    54 schema:pagination 9
    55 schema:productId N4530468dbf47417c970abb977b3579f7
    56 N653ea1903b994845a7d50866469ded36
    57 N8fc20dce65414076bd799fef190e5b11
    58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112712532
    59 https://doi.org/10.1186/s13673-019-0171-z
    60 schema:sdDatePublished 2019-04-11T11:43
    61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    62 schema:sdPublisher N0a62a99b34504a22b062c620058472da
    63 schema:url https://link.springer.com/10.1186%2Fs13673-019-0171-z
    64 sgo:license sg:explorer/license/
    65 sgo:sdDataset articles
    66 rdf:type schema:ScholarlyArticle
    67 N0a62a99b34504a22b062c620058472da schema:name Springer Nature - SN SciGraph project
    68 rdf:type schema:Organization
    69 N266c1fd6124f47f590fdae7950e03913 schema:issueNumber 1
    70 rdf:type schema:PublicationIssue
    71 N2f622f3be9164dbc8dbc9ee4040ca6ca rdf:first N9e2d0d3849bc432cafa01d4c4ca4add4
    72 rdf:rest rdf:nil
    73 N4530468dbf47417c970abb977b3579f7 schema:name readcube_id
    74 schema:value a699d4b296ef3b0455c7a8f9abf32dc69523c7f5e2b24a609688478f53fcf93b
    75 rdf:type schema:PropertyValue
    76 N6079585ee1a64926bcbf388a04d440d7 schema:affiliation https://www.grid.ac/institutes/grid.454328.c
    77 schema:familyName Hayat
    78 schema:givenName Hussain
    79 rdf:type schema:Person
    80 N653ea1903b994845a7d50866469ded36 schema:name doi
    81 schema:value 10.1186/s13673-019-0171-z
    82 rdf:type schema:PropertyValue
    83 N6bf555972b854904ace6d3530a46ee16 schema:affiliation https://www.grid.ac/institutes/grid.454328.c
    84 schema:familyName Khan
    85 schema:givenName Malik Jahan
    86 rdf:type schema:Person
    87 N86b62fc4754a4a82bd396662590625f1 rdf:first N6079585ee1a64926bcbf388a04d440d7
    88 rdf:rest N2f622f3be9164dbc8dbc9ee4040ca6ca
    89 N8fc20dce65414076bd799fef190e5b11 schema:name dimensions_id
    90 schema:value pub.1112712532
    91 rdf:type schema:PropertyValue
    92 N9e2d0d3849bc432cafa01d4c4ca4add4 schema:affiliation https://www.grid.ac/institutes/grid.6268.a
    93 schema:familyName Awan
    94 schema:givenName Irfan
    95 rdf:type schema:Person
    96 Na73d4bf9e68d4d4f909477bbd73bba1e schema:volumeNumber 9
    97 rdf:type schema:PublicationVolume
    98 Nc6352fc92c5842118e59c21900c4cd2b rdf:first N6bf555972b854904ace6d3530a46ee16
    99 rdf:rest N86b62fc4754a4a82bd396662590625f1
    100 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    101 schema:name Information and Computing Sciences
    102 rdf:type schema:DefinedTerm
    103 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    104 schema:name Artificial Intelligence and Image Processing
    105 rdf:type schema:DefinedTerm
    106 sg:journal.1136381 schema:issn 2192-1962
    107 schema:name Human-centric Computing and Information Sciences
    108 rdf:type schema:Periodical
    109 sg:pub.10.1007/3-540-44527-7_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037969634
    110 https://doi.org/10.1007/3-540-44527-7_15
    111 rdf:type schema:CreativeWork
    112 sg:pub.10.1007/3-540-48508-2_20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013619051
    113 https://doi.org/10.1007/3-540-48508-2_20
    114 rdf:type schema:CreativeWork
    115 sg:pub.10.1007/3-540-48508-2_24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006669129
    116 https://doi.org/10.1007/3-540-48508-2_24
    117 rdf:type schema:CreativeWork
    118 sg:pub.10.1007/3-540-48508-2_25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023342630
    119 https://doi.org/10.1007/3-540-48508-2_25
    120 rdf:type schema:CreativeWork
    121 sg:pub.10.1007/3-540-58330-0_83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041631409
    122 https://doi.org/10.1007/3-540-58330-0_83
    123 rdf:type schema:CreativeWork
    124 sg:pub.10.1007/3-540-64574-8_437 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012004393
    125 https://doi.org/10.1007/3-540-64574-8_437
    126 rdf:type schema:CreativeWork
    127 sg:pub.10.1007/978-3-030-00009-7_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107124526
    128 https://doi.org/10.1007/978-3-030-00009-7_11
    129 rdf:type schema:CreativeWork
    130 sg:pub.10.1007/978-3-319-24586-7_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050927972
    131 https://doi.org/10.1007/978-3-319-24586-7_1
    132 rdf:type schema:CreativeWork
    133 sg:pub.10.1007/978-3-642-14078-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026672672
    134 https://doi.org/10.1007/978-3-642-14078-5
    135 rdf:type schema:CreativeWork
    136 sg:pub.10.1007/978-3-642-23291-6_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014101789
    137 https://doi.org/10.1007/978-3-642-23291-6_6
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1007/978-3-642-39056-2_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012938660
    140 https://doi.org/10.1007/978-3-642-39056-2_1
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1007/978-3-642-39056-2_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050862226
    143 https://doi.org/10.1007/978-3-642-39056-2_16
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1007/978-3-662-05129-0_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005373143
    146 https://doi.org/10.1007/978-3-662-05129-0_9
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.1007/bfb0020625 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047881328
    149 https://doi.org/10.1007/bfb0020625
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1007/bfb0056333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007992722
    152 https://doi.org/10.1007/bfb0056333
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1007/s10844-015-0378-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1048814763
    155 https://doi.org/10.1007/s10844-015-0378-z
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1007/s11219-006-7597-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1031601770
    158 https://doi.org/10.1007/s11219-006-7597-z
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1186/s13673-017-0103-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085919723
    161 https://doi.org/10.1186/s13673-017-0103-8
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1016/0004-3702(90)90059-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000664033
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1016/b978-0-934613-64-4.50052-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034475197
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1016/j.eswa.2010.11.080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019492981
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1016/j.eswa.2012.02.063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018068999
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1016/j.eswa.2013.09.051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012284636
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1016/j.jcss.2013.03.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037452675
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1016/j.knosys.2014.05.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050483380
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1016/j.procs.2014.08.081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048683443
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1016/j.simpat.2011.08.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021989782
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1016/s0164-1212(00)00005-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049409800
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1017/s0269888900007098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045245528
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1017/s0269888906000646 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004639805
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.1049/iet-sen.2013.0127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056837210
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.1080/088395198117730 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004285195
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.1109/tit.1968.1054155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061646472
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1109/tkde.2008.227 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061661904
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.1109/tsmcc.2010.2071862 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061798273
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1145/3275245.3275263 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107809783
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.22489/cinc.2017.134-299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101807147
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.24963/ijcai.2018/770 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105386928
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.3390/sym10060193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104326102
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.3745/jips.04.0048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092566221
    206 rdf:type schema:CreativeWork
    207 https://www.grid.ac/institutes/grid.454328.c schema:alternateName Namal College
    208 schema:name Department of Computer Science, Namal College, Mianwali, Pakistan
    209 rdf:type schema:Organization
    210 https://www.grid.ac/institutes/grid.6268.a schema:alternateName University of Bradford
    211 schema:name School of Electrical Engineering and Computer Science, University of Bradford, Bradford, UK
    212 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...