Enhancing network cluster synchronization capability based on artificial immune algorithm View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Tinggui Chen, Jiawen Shi, Jianjun Yang, Gongfa Li

ABSTRACT

With the deeper study on complex networks, more and more attention has been paid to the research on the cluster synchronization phenomena based on complex networks. In the real world, synchronization phenomena or cluster synchronous behaviors occur frequently, some of which may result in larger negative impacts to the society, such as “cadmium rice event,” while others bring significant economic benefits to the society, such as the synchronization of the propaganda for “black Friday.” Therefore, research on cluster synchronism has great values for theoretical study and social applications. Currently, the study of cluster synchronicity is focused on the solution of the synchronization threshold and the analysis of the synchronization phenomenon, etc. However, the optimization to enhance the synchronous evolutionary effect is rarely presented in literatures. To overcome these limitations of current work, we explore the optimization of network structure with artificial immune algorithms under the condition of a constant network scale and finally realize the promotion of synchronous evolution effect in this paper. Moreover, the relevant research results are applied to real cases. On one hand, for the positive synchronous behaviors, the network structure with good synchronization capability is created to achieve better synchronization. On the other hand, the connection between nodes and edges in the network is cut off to avoid the occurrence of negative synchronous behaviors. More... »

PAGES

3

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13673-019-0164-y

DOI

http://dx.doi.org/10.1186/s13673-019-0164-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111314812


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Zhejiang Gongshang University", 
          "id": "https://www.grid.ac/institutes/grid.413072.3", 
          "name": [
            "Key Research Institute (KRI)-Modern Business Research Center, Zhejiang Gongshang University, Hangzhou, China", 
            "School of Management and E-Business, Zhejiang Gongshang University, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Tinggui", 
        "id": "sg:person.01066364304.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066364304.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Zhejiang Gongshang University", 
          "id": "https://www.grid.ac/institutes/grid.413072.3", 
          "name": [
            "School of Management and E-Business, Zhejiang Gongshang University, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shi", 
        "givenName": "Jiawen", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of North Georgia", 
          "id": "https://www.grid.ac/institutes/grid.412232.4", 
          "name": [
            "Department of Computer Science and Information Systems, University of North Georgia, Oakwood, GA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Jianjun", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wuhan University of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.412787.f", 
          "name": [
            "Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering, Wuhan University of Science and Technology, Wuhan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Gongfa", 
        "id": "sg:person.015372775264.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015372775264.72"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1140/epjb/e2006-00131-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002588652", 
          "https://doi.org/10.1140/epjb/e2006-00131-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physa.2006.08.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003146351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/2192-1962-2-17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003493978", 
          "https://doi.org/10.1186/2192-1962-2-17"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.286.5439.509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010080128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aeue.2016.03.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012028575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2012/713740", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016347582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2014/438260", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018906532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physa.2015.05.051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018948153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.69.067105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027720053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.69.067105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027720053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jfineco.2004.11.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028804711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/2192-1962-3-13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029504390", 
          "https://doi.org/10.1186/2192-1962-3-13"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10764-011-9520-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039250080", 
          "https://doi.org/10.1007/s10764-011-9520-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/30918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041985305", 
          "https://doi.org/10.1038/30918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/30918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041985305", 
          "https://doi.org/10.1038/30918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physrep.2015.10.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042555605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physa.2006.03.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049245520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0129183105007261", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062904403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2017/3959474", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083410235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.procs.2017.03.136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084534300"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-cps.2016.0013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090883077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2017.08.062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091308192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/119/30002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092383924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-68542-7_74", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092481981", 
          "https://doi.org/10.1007/978-3-319-68542-7_74"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eurtel.2017.10.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092692276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2017.11.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092830816"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccsce.2016.7893561", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095417249"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/smc.2015.111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095454505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1108/lht-06-2017-0120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099892912"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.97.042217", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103644082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.97.042217", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103644082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jpdc.2018.04.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103668351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2018.06.047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105249803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asoc.2018.07.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105295775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00332-018-9489-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106893190", 
          "https://doi.org/10.1007/s00332-018-9489-3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "With the deeper study on complex networks, more and more attention has been paid to the research on the cluster synchronization phenomena based on complex networks. In the real world, synchronization phenomena or cluster synchronous behaviors occur frequently, some of which may result in larger negative impacts to the society, such as \u201ccadmium rice event,\u201d while others bring significant economic benefits to the society, such as the synchronization of the propaganda for \u201cblack Friday.\u201d Therefore, research on cluster synchronism has great values for theoretical study and social applications. Currently, the study of cluster synchronicity is focused on the solution of the synchronization threshold and the analysis of the synchronization phenomenon, etc. However, the optimization to enhance the synchronous evolutionary effect is rarely presented in literatures. To overcome these limitations of current work, we explore the optimization of network structure with artificial immune algorithms under the condition of a constant network scale and finally realize the promotion of synchronous evolution effect in this paper. Moreover, the relevant research results are applied to real cases. On one hand, for the positive synchronous behaviors, the network structure with good synchronization capability is created to achieve better synchronization. On the other hand, the connection between nodes and edges in the network is cut off to avoid the occurrence of negative synchronous behaviors.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s13673-019-0164-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136381", 
        "issn": [
          "2192-1962", 
          "2192-1962"
        ], 
        "name": "Human-centric Computing and Information Sciences", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Enhancing network cluster synchronization capability based on artificial immune algorithm", 
    "pagination": "3", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "080edcc1fb705f75deae087628879e61b1a7f50de019a64146bd592436f08255"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13673-019-0164-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111314812"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13673-019-0164-y", 
      "https://app.dimensions.ai/details/publication/pub.1111314812"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000315_0000000315/records_6323_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs13673-019-0164-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13673-019-0164-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13673-019-0164-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13673-019-0164-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13673-019-0164-y'


 

This table displays all metadata directly associated to this object as RDF triples.

189 TRIPLES      21 PREDICATES      59 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13673-019-0164-y schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nf7572fe1f3564f22b464d7d623d693d2
4 schema:citation sg:pub.10.1007/978-3-319-68542-7_74
5 sg:pub.10.1007/s00332-018-9489-3
6 sg:pub.10.1007/s10764-011-9520-0
7 sg:pub.10.1038/30918
8 sg:pub.10.1140/epjb/e2006-00131-0
9 sg:pub.10.1186/2192-1962-2-17
10 sg:pub.10.1186/2192-1962-3-13
11 https://doi.org/10.1016/j.aeue.2016.03.006
12 https://doi.org/10.1016/j.asoc.2018.07.001
13 https://doi.org/10.1016/j.eswa.2018.06.047
14 https://doi.org/10.1016/j.eurtel.2017.10.003
15 https://doi.org/10.1016/j.ins.2017.08.062
16 https://doi.org/10.1016/j.ins.2017.11.030
17 https://doi.org/10.1016/j.jfineco.2004.11.003
18 https://doi.org/10.1016/j.jpdc.2018.04.009
19 https://doi.org/10.1016/j.physa.2006.03.041
20 https://doi.org/10.1016/j.physa.2006.08.016
21 https://doi.org/10.1016/j.physa.2015.05.051
22 https://doi.org/10.1016/j.physrep.2015.10.008
23 https://doi.org/10.1016/j.procs.2017.03.136
24 https://doi.org/10.1049/iet-cps.2016.0013
25 https://doi.org/10.1103/physreve.69.067105
26 https://doi.org/10.1103/physreve.97.042217
27 https://doi.org/10.1108/lht-06-2017-0120
28 https://doi.org/10.1109/iccsce.2016.7893561
29 https://doi.org/10.1109/smc.2015.111
30 https://doi.org/10.1126/science.286.5439.509
31 https://doi.org/10.1142/s0129183105007261
32 https://doi.org/10.1155/2012/713740
33 https://doi.org/10.1155/2014/438260
34 https://doi.org/10.1155/2017/3959474
35 https://doi.org/10.1209/0295-5075/119/30002
36 schema:datePublished 2019-12
37 schema:datePublishedReg 2019-12-01
38 schema:description With the deeper study on complex networks, more and more attention has been paid to the research on the cluster synchronization phenomena based on complex networks. In the real world, synchronization phenomena or cluster synchronous behaviors occur frequently, some of which may result in larger negative impacts to the society, such as “cadmium rice event,” while others bring significant economic benefits to the society, such as the synchronization of the propaganda for “black Friday.” Therefore, research on cluster synchronism has great values for theoretical study and social applications. Currently, the study of cluster synchronicity is focused on the solution of the synchronization threshold and the analysis of the synchronization phenomenon, etc. However, the optimization to enhance the synchronous evolutionary effect is rarely presented in literatures. To overcome these limitations of current work, we explore the optimization of network structure with artificial immune algorithms under the condition of a constant network scale and finally realize the promotion of synchronous evolution effect in this paper. Moreover, the relevant research results are applied to real cases. On one hand, for the positive synchronous behaviors, the network structure with good synchronization capability is created to achieve better synchronization. On the other hand, the connection between nodes and edges in the network is cut off to avoid the occurrence of negative synchronous behaviors.
39 schema:genre research_article
40 schema:inLanguage en
41 schema:isAccessibleForFree true
42 schema:isPartOf N4865f5188aa442bcbe46144ed4217c7f
43 Na0f3767596ee440f9afea6155a7a6146
44 sg:journal.1136381
45 schema:name Enhancing network cluster synchronization capability based on artificial immune algorithm
46 schema:pagination 3
47 schema:productId N19b7c41bc79e4c79bcee8f93bac820ee
48 N5a27becf5c454f16868625309170563c
49 Nd16173c5f14e4e6aa17e01688afeb4b9
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111314812
51 https://doi.org/10.1186/s13673-019-0164-y
52 schema:sdDatePublished 2019-04-11T08:37
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher Nfbc7867b14594ad38e829cb7dc02a6df
55 schema:url https://link.springer.com/10.1186%2Fs13673-019-0164-y
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N0c27a4ebf2d2480ba91cc9d96fe89891 schema:affiliation https://www.grid.ac/institutes/grid.413072.3
60 schema:familyName Shi
61 schema:givenName Jiawen
62 rdf:type schema:Person
63 N101de5b7a3d7400b91e05f7842e12bc5 rdf:first Na022b0e468244be3a1f12e7c4afbe8c9
64 rdf:rest Nc686bebf5ac34b898ca32fe6a04f2886
65 N19b7c41bc79e4c79bcee8f93bac820ee schema:name readcube_id
66 schema:value 080edcc1fb705f75deae087628879e61b1a7f50de019a64146bd592436f08255
67 rdf:type schema:PropertyValue
68 N4865f5188aa442bcbe46144ed4217c7f schema:issueNumber 1
69 rdf:type schema:PublicationIssue
70 N5a27becf5c454f16868625309170563c schema:name doi
71 schema:value 10.1186/s13673-019-0164-y
72 rdf:type schema:PropertyValue
73 N7b58dd0e0eb24ac9a6189da54a2a13c1 rdf:first N0c27a4ebf2d2480ba91cc9d96fe89891
74 rdf:rest N101de5b7a3d7400b91e05f7842e12bc5
75 Na022b0e468244be3a1f12e7c4afbe8c9 schema:affiliation https://www.grid.ac/institutes/grid.412232.4
76 schema:familyName Yang
77 schema:givenName Jianjun
78 rdf:type schema:Person
79 Na0f3767596ee440f9afea6155a7a6146 schema:volumeNumber 9
80 rdf:type schema:PublicationVolume
81 Nc686bebf5ac34b898ca32fe6a04f2886 rdf:first sg:person.015372775264.72
82 rdf:rest rdf:nil
83 Nd16173c5f14e4e6aa17e01688afeb4b9 schema:name dimensions_id
84 schema:value pub.1111314812
85 rdf:type schema:PropertyValue
86 Nf7572fe1f3564f22b464d7d623d693d2 rdf:first sg:person.01066364304.93
87 rdf:rest N7b58dd0e0eb24ac9a6189da54a2a13c1
88 Nfbc7867b14594ad38e829cb7dc02a6df schema:name Springer Nature - SN SciGraph project
89 rdf:type schema:Organization
90 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
91 schema:name Information and Computing Sciences
92 rdf:type schema:DefinedTerm
93 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
94 schema:name Artificial Intelligence and Image Processing
95 rdf:type schema:DefinedTerm
96 sg:journal.1136381 schema:issn 2192-1962
97 schema:name Human-centric Computing and Information Sciences
98 rdf:type schema:Periodical
99 sg:person.01066364304.93 schema:affiliation https://www.grid.ac/institutes/grid.413072.3
100 schema:familyName Chen
101 schema:givenName Tinggui
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066364304.93
103 rdf:type schema:Person
104 sg:person.015372775264.72 schema:affiliation https://www.grid.ac/institutes/grid.412787.f
105 schema:familyName Li
106 schema:givenName Gongfa
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015372775264.72
108 rdf:type schema:Person
109 sg:pub.10.1007/978-3-319-68542-7_74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092481981
110 https://doi.org/10.1007/978-3-319-68542-7_74
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/s00332-018-9489-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106893190
113 https://doi.org/10.1007/s00332-018-9489-3
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/s10764-011-9520-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039250080
116 https://doi.org/10.1007/s10764-011-9520-0
117 rdf:type schema:CreativeWork
118 sg:pub.10.1038/30918 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041985305
119 https://doi.org/10.1038/30918
120 rdf:type schema:CreativeWork
121 sg:pub.10.1140/epjb/e2006-00131-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002588652
122 https://doi.org/10.1140/epjb/e2006-00131-0
123 rdf:type schema:CreativeWork
124 sg:pub.10.1186/2192-1962-2-17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003493978
125 https://doi.org/10.1186/2192-1962-2-17
126 rdf:type schema:CreativeWork
127 sg:pub.10.1186/2192-1962-3-13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029504390
128 https://doi.org/10.1186/2192-1962-3-13
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.aeue.2016.03.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012028575
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.asoc.2018.07.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105295775
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.eswa.2018.06.047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105249803
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.eurtel.2017.10.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092692276
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.ins.2017.08.062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091308192
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.ins.2017.11.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092830816
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.jfineco.2004.11.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028804711
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.jpdc.2018.04.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103668351
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.physa.2006.03.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049245520
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.physa.2006.08.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003146351
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.physa.2015.05.051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018948153
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.physrep.2015.10.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042555605
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.procs.2017.03.136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084534300
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1049/iet-cps.2016.0013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090883077
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1103/physreve.69.067105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027720053
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1103/physreve.97.042217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103644082
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1108/lht-06-2017-0120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099892912
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1109/iccsce.2016.7893561 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095417249
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1109/smc.2015.111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095454505
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1126/science.286.5439.509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010080128
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1142/s0129183105007261 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062904403
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1155/2012/713740 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016347582
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1155/2014/438260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018906532
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1155/2017/3959474 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083410235
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1209/0295-5075/119/30002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092383924
179 rdf:type schema:CreativeWork
180 https://www.grid.ac/institutes/grid.412232.4 schema:alternateName University of North Georgia
181 schema:name Department of Computer Science and Information Systems, University of North Georgia, Oakwood, GA, USA
182 rdf:type schema:Organization
183 https://www.grid.ac/institutes/grid.412787.f schema:alternateName Wuhan University of Science and Technology
184 schema:name Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering, Wuhan University of Science and Technology, Wuhan, China
185 rdf:type schema:Organization
186 https://www.grid.ac/institutes/grid.413072.3 schema:alternateName Zhejiang Gongshang University
187 schema:name Key Research Institute (KRI)-Modern Business Research Center, Zhejiang Gongshang University, Hangzhou, China
188 School of Management and E-Business, Zhejiang Gongshang University, Hangzhou, China
189 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...