A multi-hop graph-based approach for an energy-efficient routing protocol in wireless sensor networks View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Hana Rhim, Karim Tamine, Ryma Abassi, Damien Sauveron, Sihem Guemara

ABSTRACT

Emerging technological advances in wireless communication and networking have led to the design of large scale networks and small sensor units with minimal power requirements and multifunctional processing. Though energy harvesting technologies are improving, the energy of sensors remains a scarce resource when designing routing protocols between sensor nodes and base station. This paper proposes a multi-hop graph-based approach for an energy-efficient routing (MH-GEER) protocol in wireless sensor networks which aims to distribute energy consumption between clusters at a balanced rate and thus extend networks’ lifespans. MH-GEER deals with node clustering and inter-cluster multi-hop routing selection. The clustering phase is built upon the centralized formation of clusters and the distributed selection of cluster heads similar to that of low-energy adaptive clustering hierarchy (LEACH). The routing phase builds a dynamic multi-hop path between cluster heads and the base station. Our strategy is about exploring the energy levels in the entire network and using these to select the next hop in a probabilistic, intelligent way. Performance evaluation shows that MH-GEER minimizes energy depletion in distant clusters and ensures load balancing in a network, thus improving the network’s lifetime and stability compared with single-hop conventional LEACH protocol. More... »

PAGES

30

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13673-018-0153-6

DOI

http://dx.doi.org/10.1186/s13673-018-0153-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107544879


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1005", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Communications Technologies", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Carthage", 
          "id": "https://www.grid.ac/institutes/grid.419508.1", 
          "name": [
            "Digital Security Research Unit, Higher School of Communication of Tunis, Sup\u2019Com, University of Carthage, Tunis, Tunisia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rhim", 
        "givenName": "Hana", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "XLIM", 
          "id": "https://www.grid.ac/institutes/grid.462736.2", 
          "name": [
            "MathIS, XLIM (UMR CNRS 7252/Universit\u00e9 de Limoges), Limoges, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tamine", 
        "givenName": "Karim", 
        "id": "sg:person.010412714301.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010412714301.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Carthage", 
          "id": "https://www.grid.ac/institutes/grid.419508.1", 
          "name": [
            "Digital Security Research Unit, Higher School of Communication of Tunis, Sup\u2019Com, University of Carthage, Tunis, Tunisia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Abassi", 
        "givenName": "Ryma", 
        "id": "sg:person.015442516763.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015442516763.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "XLIM", 
          "id": "https://www.grid.ac/institutes/grid.462736.2", 
          "name": [
            "MathIS, XLIM (UMR CNRS 7252/Universit\u00e9 de Limoges), Limoges, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sauveron", 
        "givenName": "Damien", 
        "id": "sg:person.012131455337.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012131455337.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Carthage", 
          "id": "https://www.grid.ac/institutes/grid.419508.1", 
          "name": [
            "Digital Security Research Unit, Higher School of Communication of Tunis, Sup\u2019Com, University of Carthage, Tunis, Tunisia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guemara", 
        "givenName": "Sihem", 
        "id": "sg:person.012072442132.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012072442132.90"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-642-18129-0_62", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003620177", 
          "https://doi.org/10.1007/978-3-642-18129-0_62"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/s150510350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006130021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jnca.2014.02.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010845418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11276-015-1061-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020633828", 
          "https://doi.org/10.1007/s11276-015-1061-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2011.09.076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022789814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2010.07.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036114074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bushor.2015.03.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040735632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/106454699568728", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042153232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.procs.2016.07.393", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045390212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/s120811113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046569859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jetcas.2013.2243032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061280433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.comnet.2017.05.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085426970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13673-017-0109-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092180076", 
          "https://doi.org/10.1186/s13673-017-0109-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/access.2017.2769663", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092524872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ccintels.2016.7878192", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093303882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/chicc.2016.7554682", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093316472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/aiccsa.2008.4493668", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093554924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/csnt.2014.40", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093559268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cyberc.2016.87", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093774620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lisat.2016.7494137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094412511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/acosis.2016.7843949", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094495394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/roedunet.2016.7753231", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094796588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cicn.2012.136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095174003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iacs.2017.7921979", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095305295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/hicss.2000.926982", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095577085"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "Emerging technological advances in wireless communication and networking have led to the design of large scale networks and small sensor units with minimal power requirements and multifunctional processing. Though energy harvesting technologies are improving, the energy of sensors remains a scarce resource when designing routing protocols between sensor nodes and base station. This paper proposes a multi-hop graph-based approach for an energy-efficient routing (MH-GEER) protocol in wireless sensor networks which aims to distribute energy consumption between clusters at a balanced rate and thus extend networks\u2019 lifespans. MH-GEER deals with node clustering and inter-cluster multi-hop routing selection. The clustering phase is built upon the centralized formation of clusters and the distributed selection of cluster heads similar to that of low-energy adaptive clustering hierarchy (LEACH). The routing phase builds a dynamic multi-hop path between cluster heads and the base station. Our strategy is about exploring the energy levels in the entire network and using these to select the next hop in a probabilistic, intelligent way. Performance evaluation shows that MH-GEER minimizes energy depletion in distant clusters and ensures load balancing in a network, thus improving the network\u2019s lifetime and stability compared with single-hop conventional LEACH protocol.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s13673-018-0153-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136381", 
        "issn": [
          "2192-1962", 
          "2192-1962"
        ], 
        "name": "Human-centric Computing and Information Sciences", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "A multi-hop graph-based approach for an energy-efficient routing protocol in wireless sensor networks", 
    "pagination": "30", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "04e2ed05d1d29bd1ec8320f42dfcb8ae8a9b8b91c747b1e4eb5c539c9cade619"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13673-018-0153-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107544879"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13673-018-0153-6", 
      "https://app.dimensions.ai/details/publication/pub.1107544879"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000560.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs13673-018-0153-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13673-018-0153-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13673-018-0153-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13673-018-0153-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13673-018-0153-6'


 

This table displays all metadata directly associated to this object as RDF triples.

168 TRIPLES      21 PREDICATES      52 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13673-018-0153-6 schema:about anzsrc-for:10
2 anzsrc-for:1005
3 schema:author Nc1edce18597443cb89f8cd311ceb06f0
4 schema:citation sg:pub.10.1007/978-3-642-18129-0_62
5 sg:pub.10.1007/s11276-015-1061-6
6 sg:pub.10.1186/s13673-017-0109-2
7 https://doi.org/10.1016/j.bushor.2015.03.008
8 https://doi.org/10.1016/j.comnet.2017.05.011
9 https://doi.org/10.1016/j.eswa.2011.09.076
10 https://doi.org/10.1016/j.ins.2010.07.005
11 https://doi.org/10.1016/j.jnca.2014.02.008
12 https://doi.org/10.1016/j.procs.2016.07.393
13 https://doi.org/10.1109/access.2017.2769663
14 https://doi.org/10.1109/acosis.2016.7843949
15 https://doi.org/10.1109/aiccsa.2008.4493668
16 https://doi.org/10.1109/ccintels.2016.7878192
17 https://doi.org/10.1109/chicc.2016.7554682
18 https://doi.org/10.1109/cicn.2012.136
19 https://doi.org/10.1109/csnt.2014.40
20 https://doi.org/10.1109/cyberc.2016.87
21 https://doi.org/10.1109/hicss.2000.926982
22 https://doi.org/10.1109/iacs.2017.7921979
23 https://doi.org/10.1109/jetcas.2013.2243032
24 https://doi.org/10.1109/lisat.2016.7494137
25 https://doi.org/10.1109/roedunet.2016.7753231
26 https://doi.org/10.1162/106454699568728
27 https://doi.org/10.3390/s120811113
28 https://doi.org/10.3390/s150510350
29 schema:datePublished 2018-12
30 schema:datePublishedReg 2018-12-01
31 schema:description Emerging technological advances in wireless communication and networking have led to the design of large scale networks and small sensor units with minimal power requirements and multifunctional processing. Though energy harvesting technologies are improving, the energy of sensors remains a scarce resource when designing routing protocols between sensor nodes and base station. This paper proposes a multi-hop graph-based approach for an energy-efficient routing (MH-GEER) protocol in wireless sensor networks which aims to distribute energy consumption between clusters at a balanced rate and thus extend networks’ lifespans. MH-GEER deals with node clustering and inter-cluster multi-hop routing selection. The clustering phase is built upon the centralized formation of clusters and the distributed selection of cluster heads similar to that of low-energy adaptive clustering hierarchy (LEACH). The routing phase builds a dynamic multi-hop path between cluster heads and the base station. Our strategy is about exploring the energy levels in the entire network and using these to select the next hop in a probabilistic, intelligent way. Performance evaluation shows that MH-GEER minimizes energy depletion in distant clusters and ensures load balancing in a network, thus improving the network’s lifetime and stability compared with single-hop conventional LEACH protocol.
32 schema:genre research_article
33 schema:inLanguage en
34 schema:isAccessibleForFree true
35 schema:isPartOf N99af4f05dd9441dbba8af92b7f16d35e
36 Nf767802a33764d6aab19834ff0dda26f
37 sg:journal.1136381
38 schema:name A multi-hop graph-based approach for an energy-efficient routing protocol in wireless sensor networks
39 schema:pagination 30
40 schema:productId N19acb1c88b7441e88c83ca67b9fc7519
41 N9d9966f7cc0246abbb3714d75c3b479f
42 Nd1db172ac88a473c84b8bea9fef7841e
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107544879
44 https://doi.org/10.1186/s13673-018-0153-6
45 schema:sdDatePublished 2019-04-11T01:15
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher Nec1545203ac84e989f9811b21f2ff761
48 schema:url https://link.springer.com/10.1186%2Fs13673-018-0153-6
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N18b79562b25d498bb7212eff22e311b1 rdf:first sg:person.010412714301.77
53 rdf:rest Nf7079811929b434893107622328894bf
54 N19acb1c88b7441e88c83ca67b9fc7519 schema:name readcube_id
55 schema:value 04e2ed05d1d29bd1ec8320f42dfcb8ae8a9b8b91c747b1e4eb5c539c9cade619
56 rdf:type schema:PropertyValue
57 N3611b32b2f3b4418a0e972041f84b4a6 rdf:first sg:person.012131455337.74
58 rdf:rest N430387287416442fa9fc55330781f660
59 N430387287416442fa9fc55330781f660 rdf:first sg:person.012072442132.90
60 rdf:rest rdf:nil
61 N6abe7086ca204afeaade1f015af3e511 schema:affiliation https://www.grid.ac/institutes/grid.419508.1
62 schema:familyName Rhim
63 schema:givenName Hana
64 rdf:type schema:Person
65 N99af4f05dd9441dbba8af92b7f16d35e schema:issueNumber 1
66 rdf:type schema:PublicationIssue
67 N9d9966f7cc0246abbb3714d75c3b479f schema:name doi
68 schema:value 10.1186/s13673-018-0153-6
69 rdf:type schema:PropertyValue
70 Nc1edce18597443cb89f8cd311ceb06f0 rdf:first N6abe7086ca204afeaade1f015af3e511
71 rdf:rest N18b79562b25d498bb7212eff22e311b1
72 Nd1db172ac88a473c84b8bea9fef7841e schema:name dimensions_id
73 schema:value pub.1107544879
74 rdf:type schema:PropertyValue
75 Nec1545203ac84e989f9811b21f2ff761 schema:name Springer Nature - SN SciGraph project
76 rdf:type schema:Organization
77 Nf7079811929b434893107622328894bf rdf:first sg:person.015442516763.20
78 rdf:rest N3611b32b2f3b4418a0e972041f84b4a6
79 Nf767802a33764d6aab19834ff0dda26f schema:volumeNumber 8
80 rdf:type schema:PublicationVolume
81 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
82 schema:name Technology
83 rdf:type schema:DefinedTerm
84 anzsrc-for:1005 schema:inDefinedTermSet anzsrc-for:
85 schema:name Communications Technologies
86 rdf:type schema:DefinedTerm
87 sg:journal.1136381 schema:issn 2192-1962
88 schema:name Human-centric Computing and Information Sciences
89 rdf:type schema:Periodical
90 sg:person.010412714301.77 schema:affiliation https://www.grid.ac/institutes/grid.462736.2
91 schema:familyName Tamine
92 schema:givenName Karim
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010412714301.77
94 rdf:type schema:Person
95 sg:person.012072442132.90 schema:affiliation https://www.grid.ac/institutes/grid.419508.1
96 schema:familyName Guemara
97 schema:givenName Sihem
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012072442132.90
99 rdf:type schema:Person
100 sg:person.012131455337.74 schema:affiliation https://www.grid.ac/institutes/grid.462736.2
101 schema:familyName Sauveron
102 schema:givenName Damien
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012131455337.74
104 rdf:type schema:Person
105 sg:person.015442516763.20 schema:affiliation https://www.grid.ac/institutes/grid.419508.1
106 schema:familyName Abassi
107 schema:givenName Ryma
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015442516763.20
109 rdf:type schema:Person
110 sg:pub.10.1007/978-3-642-18129-0_62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003620177
111 https://doi.org/10.1007/978-3-642-18129-0_62
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/s11276-015-1061-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020633828
114 https://doi.org/10.1007/s11276-015-1061-6
115 rdf:type schema:CreativeWork
116 sg:pub.10.1186/s13673-017-0109-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092180076
117 https://doi.org/10.1186/s13673-017-0109-2
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.bushor.2015.03.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040735632
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.comnet.2017.05.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085426970
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.eswa.2011.09.076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022789814
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.ins.2010.07.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036114074
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.jnca.2014.02.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010845418
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.procs.2016.07.393 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045390212
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1109/access.2017.2769663 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092524872
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1109/acosis.2016.7843949 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094495394
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1109/aiccsa.2008.4493668 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093554924
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1109/ccintels.2016.7878192 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093303882
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1109/chicc.2016.7554682 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093316472
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1109/cicn.2012.136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095174003
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1109/csnt.2014.40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093559268
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1109/cyberc.2016.87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093774620
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1109/hicss.2000.926982 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095577085
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1109/iacs.2017.7921979 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095305295
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1109/jetcas.2013.2243032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061280433
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1109/lisat.2016.7494137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094412511
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1109/roedunet.2016.7753231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094796588
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1162/106454699568728 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042153232
158 rdf:type schema:CreativeWork
159 https://doi.org/10.3390/s120811113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046569859
160 rdf:type schema:CreativeWork
161 https://doi.org/10.3390/s150510350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006130021
162 rdf:type schema:CreativeWork
163 https://www.grid.ac/institutes/grid.419508.1 schema:alternateName University of Carthage
164 schema:name Digital Security Research Unit, Higher School of Communication of Tunis, Sup’Com, University of Carthage, Tunis, Tunisia
165 rdf:type schema:Organization
166 https://www.grid.ac/institutes/grid.462736.2 schema:alternateName XLIM
167 schema:name MathIS, XLIM (UMR CNRS 7252/Université de Limoges), Limoges, France
168 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...