A multi-hop graph-based approach for an energy-efficient routing protocol in wireless sensor networks View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Hana Rhim, Karim Tamine, Ryma Abassi, Damien Sauveron, Sihem Guemara

ABSTRACT

Emerging technological advances in wireless communication and networking have led to the design of large scale networks and small sensor units with minimal power requirements and multifunctional processing. Though energy harvesting technologies are improving, the energy of sensors remains a scarce resource when designing routing protocols between sensor nodes and base station. This paper proposes a multi-hop graph-based approach for an energy-efficient routing (MH-GEER) protocol in wireless sensor networks which aims to distribute energy consumption between clusters at a balanced rate and thus extend networks’ lifespans. MH-GEER deals with node clustering and inter-cluster multi-hop routing selection. The clustering phase is built upon the centralized formation of clusters and the distributed selection of cluster heads similar to that of low-energy adaptive clustering hierarchy (LEACH). The routing phase builds a dynamic multi-hop path between cluster heads and the base station. Our strategy is about exploring the energy levels in the entire network and using these to select the next hop in a probabilistic, intelligent way. Performance evaluation shows that MH-GEER minimizes energy depletion in distant clusters and ensures load balancing in a network, thus improving the network’s lifetime and stability compared with single-hop conventional LEACH protocol. More... »

PAGES

30

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13673-018-0153-6

DOI

http://dx.doi.org/10.1186/s13673-018-0153-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107544879


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1005", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Communications Technologies", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Carthage", 
          "id": "https://www.grid.ac/institutes/grid.419508.1", 
          "name": [
            "Digital Security Research Unit, Higher School of Communication of Tunis, Sup\u2019Com, University of Carthage, Tunis, Tunisia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rhim", 
        "givenName": "Hana", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "XLIM", 
          "id": "https://www.grid.ac/institutes/grid.462736.2", 
          "name": [
            "MathIS, XLIM (UMR CNRS 7252/Universit\u00e9 de Limoges), Limoges, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tamine", 
        "givenName": "Karim", 
        "id": "sg:person.010412714301.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010412714301.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Carthage", 
          "id": "https://www.grid.ac/institutes/grid.419508.1", 
          "name": [
            "Digital Security Research Unit, Higher School of Communication of Tunis, Sup\u2019Com, University of Carthage, Tunis, Tunisia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Abassi", 
        "givenName": "Ryma", 
        "id": "sg:person.015442516763.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015442516763.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "XLIM", 
          "id": "https://www.grid.ac/institutes/grid.462736.2", 
          "name": [
            "MathIS, XLIM (UMR CNRS 7252/Universit\u00e9 de Limoges), Limoges, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sauveron", 
        "givenName": "Damien", 
        "id": "sg:person.012131455337.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012131455337.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Carthage", 
          "id": "https://www.grid.ac/institutes/grid.419508.1", 
          "name": [
            "Digital Security Research Unit, Higher School of Communication of Tunis, Sup\u2019Com, University of Carthage, Tunis, Tunisia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guemara", 
        "givenName": "Sihem", 
        "id": "sg:person.012072442132.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012072442132.90"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-642-18129-0_62", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003620177", 
          "https://doi.org/10.1007/978-3-642-18129-0_62"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/s150510350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006130021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jnca.2014.02.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010845418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11276-015-1061-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020633828", 
          "https://doi.org/10.1007/s11276-015-1061-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2011.09.076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022789814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2010.07.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036114074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bushor.2015.03.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040735632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/106454699568728", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042153232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.procs.2016.07.393", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045390212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/s120811113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046569859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jetcas.2013.2243032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061280433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.comnet.2017.05.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085426970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13673-017-0109-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092180076", 
          "https://doi.org/10.1186/s13673-017-0109-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/access.2017.2769663", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092524872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ccintels.2016.7878192", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093303882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/chicc.2016.7554682", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093316472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/aiccsa.2008.4493668", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093554924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/csnt.2014.40", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093559268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cyberc.2016.87", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093774620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lisat.2016.7494137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094412511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/acosis.2016.7843949", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094495394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/roedunet.2016.7753231", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094796588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cicn.2012.136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095174003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iacs.2017.7921979", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095305295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/hicss.2000.926982", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095577085"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "Emerging technological advances in wireless communication and networking have led to the design of large scale networks and small sensor units with minimal power requirements and multifunctional processing. Though energy harvesting technologies are improving, the energy of sensors remains a scarce resource when designing routing protocols between sensor nodes and base station. This paper proposes a multi-hop graph-based approach for an energy-efficient routing (MH-GEER) protocol in wireless sensor networks which aims to distribute energy consumption between clusters at a balanced rate and thus extend networks\u2019 lifespans. MH-GEER deals with node clustering and inter-cluster multi-hop routing selection. The clustering phase is built upon the centralized formation of clusters and the distributed selection of cluster heads similar to that of low-energy adaptive clustering hierarchy (LEACH). The routing phase builds a dynamic multi-hop path between cluster heads and the base station. Our strategy is about exploring the energy levels in the entire network and using these to select the next hop in a probabilistic, intelligent way. Performance evaluation shows that MH-GEER minimizes energy depletion in distant clusters and ensures load balancing in a network, thus improving the network\u2019s lifetime and stability compared with single-hop conventional LEACH protocol.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s13673-018-0153-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136381", 
        "issn": [
          "2192-1962", 
          "2192-1962"
        ], 
        "name": "Human-centric Computing and Information Sciences", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "A multi-hop graph-based approach for an energy-efficient routing protocol in wireless sensor networks", 
    "pagination": "30", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "04e2ed05d1d29bd1ec8320f42dfcb8ae8a9b8b91c747b1e4eb5c539c9cade619"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13673-018-0153-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107544879"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13673-018-0153-6", 
      "https://app.dimensions.ai/details/publication/pub.1107544879"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000560.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs13673-018-0153-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13673-018-0153-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13673-018-0153-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13673-018-0153-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13673-018-0153-6'


 

This table displays all metadata directly associated to this object as RDF triples.

168 TRIPLES      21 PREDICATES      52 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13673-018-0153-6 schema:about anzsrc-for:10
2 anzsrc-for:1005
3 schema:author Nd8449c355d7645d9ab6a8807af7fe11a
4 schema:citation sg:pub.10.1007/978-3-642-18129-0_62
5 sg:pub.10.1007/s11276-015-1061-6
6 sg:pub.10.1186/s13673-017-0109-2
7 https://doi.org/10.1016/j.bushor.2015.03.008
8 https://doi.org/10.1016/j.comnet.2017.05.011
9 https://doi.org/10.1016/j.eswa.2011.09.076
10 https://doi.org/10.1016/j.ins.2010.07.005
11 https://doi.org/10.1016/j.jnca.2014.02.008
12 https://doi.org/10.1016/j.procs.2016.07.393
13 https://doi.org/10.1109/access.2017.2769663
14 https://doi.org/10.1109/acosis.2016.7843949
15 https://doi.org/10.1109/aiccsa.2008.4493668
16 https://doi.org/10.1109/ccintels.2016.7878192
17 https://doi.org/10.1109/chicc.2016.7554682
18 https://doi.org/10.1109/cicn.2012.136
19 https://doi.org/10.1109/csnt.2014.40
20 https://doi.org/10.1109/cyberc.2016.87
21 https://doi.org/10.1109/hicss.2000.926982
22 https://doi.org/10.1109/iacs.2017.7921979
23 https://doi.org/10.1109/jetcas.2013.2243032
24 https://doi.org/10.1109/lisat.2016.7494137
25 https://doi.org/10.1109/roedunet.2016.7753231
26 https://doi.org/10.1162/106454699568728
27 https://doi.org/10.3390/s120811113
28 https://doi.org/10.3390/s150510350
29 schema:datePublished 2018-12
30 schema:datePublishedReg 2018-12-01
31 schema:description Emerging technological advances in wireless communication and networking have led to the design of large scale networks and small sensor units with minimal power requirements and multifunctional processing. Though energy harvesting technologies are improving, the energy of sensors remains a scarce resource when designing routing protocols between sensor nodes and base station. This paper proposes a multi-hop graph-based approach for an energy-efficient routing (MH-GEER) protocol in wireless sensor networks which aims to distribute energy consumption between clusters at a balanced rate and thus extend networks’ lifespans. MH-GEER deals with node clustering and inter-cluster multi-hop routing selection. The clustering phase is built upon the centralized formation of clusters and the distributed selection of cluster heads similar to that of low-energy adaptive clustering hierarchy (LEACH). The routing phase builds a dynamic multi-hop path between cluster heads and the base station. Our strategy is about exploring the energy levels in the entire network and using these to select the next hop in a probabilistic, intelligent way. Performance evaluation shows that MH-GEER minimizes energy depletion in distant clusters and ensures load balancing in a network, thus improving the network’s lifetime and stability compared with single-hop conventional LEACH protocol.
32 schema:genre research_article
33 schema:inLanguage en
34 schema:isAccessibleForFree true
35 schema:isPartOf N6d29f587abfb43fe9207b5eebaf842b6
36 Nf6a438f708bd4ce2af5d7e6620dcf232
37 sg:journal.1136381
38 schema:name A multi-hop graph-based approach for an energy-efficient routing protocol in wireless sensor networks
39 schema:pagination 30
40 schema:productId N2cc62c7454b64c63aa3f27355270b98f
41 N33e69da52aa64a5d949e93f3b17d342a
42 N5773f874ff744d58bd940cc78adbdf6c
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107544879
44 https://doi.org/10.1186/s13673-018-0153-6
45 schema:sdDatePublished 2019-04-11T01:15
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher N5f7a556f764243c3a945b530b48b9d71
48 schema:url https://link.springer.com/10.1186%2Fs13673-018-0153-6
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N2cc62c7454b64c63aa3f27355270b98f schema:name doi
53 schema:value 10.1186/s13673-018-0153-6
54 rdf:type schema:PropertyValue
55 N33e69da52aa64a5d949e93f3b17d342a schema:name readcube_id
56 schema:value 04e2ed05d1d29bd1ec8320f42dfcb8ae8a9b8b91c747b1e4eb5c539c9cade619
57 rdf:type schema:PropertyValue
58 N5773f874ff744d58bd940cc78adbdf6c schema:name dimensions_id
59 schema:value pub.1107544879
60 rdf:type schema:PropertyValue
61 N5f7a556f764243c3a945b530b48b9d71 schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 N6d29f587abfb43fe9207b5eebaf842b6 schema:volumeNumber 8
64 rdf:type schema:PublicationVolume
65 Nab19605026fc4af5bb027f2ac5c1e13f rdf:first sg:person.010412714301.77
66 rdf:rest Nd25ae7cf0f8c40a8accf7de04cb4fc06
67 Nab37959c67a94f59910db21351a1a76c rdf:first sg:person.012131455337.74
68 rdf:rest Nf88db022da4b42308eb6a39336587534
69 Nbb869444259346a3a6adb9e5a66fd4f5 schema:affiliation https://www.grid.ac/institutes/grid.419508.1
70 schema:familyName Rhim
71 schema:givenName Hana
72 rdf:type schema:Person
73 Nd25ae7cf0f8c40a8accf7de04cb4fc06 rdf:first sg:person.015442516763.20
74 rdf:rest Nab37959c67a94f59910db21351a1a76c
75 Nd8449c355d7645d9ab6a8807af7fe11a rdf:first Nbb869444259346a3a6adb9e5a66fd4f5
76 rdf:rest Nab19605026fc4af5bb027f2ac5c1e13f
77 Nf6a438f708bd4ce2af5d7e6620dcf232 schema:issueNumber 1
78 rdf:type schema:PublicationIssue
79 Nf88db022da4b42308eb6a39336587534 rdf:first sg:person.012072442132.90
80 rdf:rest rdf:nil
81 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
82 schema:name Technology
83 rdf:type schema:DefinedTerm
84 anzsrc-for:1005 schema:inDefinedTermSet anzsrc-for:
85 schema:name Communications Technologies
86 rdf:type schema:DefinedTerm
87 sg:journal.1136381 schema:issn 2192-1962
88 schema:name Human-centric Computing and Information Sciences
89 rdf:type schema:Periodical
90 sg:person.010412714301.77 schema:affiliation https://www.grid.ac/institutes/grid.462736.2
91 schema:familyName Tamine
92 schema:givenName Karim
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010412714301.77
94 rdf:type schema:Person
95 sg:person.012072442132.90 schema:affiliation https://www.grid.ac/institutes/grid.419508.1
96 schema:familyName Guemara
97 schema:givenName Sihem
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012072442132.90
99 rdf:type schema:Person
100 sg:person.012131455337.74 schema:affiliation https://www.grid.ac/institutes/grid.462736.2
101 schema:familyName Sauveron
102 schema:givenName Damien
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012131455337.74
104 rdf:type schema:Person
105 sg:person.015442516763.20 schema:affiliation https://www.grid.ac/institutes/grid.419508.1
106 schema:familyName Abassi
107 schema:givenName Ryma
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015442516763.20
109 rdf:type schema:Person
110 sg:pub.10.1007/978-3-642-18129-0_62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003620177
111 https://doi.org/10.1007/978-3-642-18129-0_62
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/s11276-015-1061-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020633828
114 https://doi.org/10.1007/s11276-015-1061-6
115 rdf:type schema:CreativeWork
116 sg:pub.10.1186/s13673-017-0109-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092180076
117 https://doi.org/10.1186/s13673-017-0109-2
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.bushor.2015.03.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040735632
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.comnet.2017.05.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085426970
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.eswa.2011.09.076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022789814
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.ins.2010.07.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036114074
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.jnca.2014.02.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010845418
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.procs.2016.07.393 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045390212
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1109/access.2017.2769663 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092524872
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1109/acosis.2016.7843949 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094495394
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1109/aiccsa.2008.4493668 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093554924
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1109/ccintels.2016.7878192 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093303882
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1109/chicc.2016.7554682 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093316472
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1109/cicn.2012.136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095174003
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1109/csnt.2014.40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093559268
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1109/cyberc.2016.87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093774620
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1109/hicss.2000.926982 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095577085
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1109/iacs.2017.7921979 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095305295
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1109/jetcas.2013.2243032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061280433
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1109/lisat.2016.7494137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094412511
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1109/roedunet.2016.7753231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094796588
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1162/106454699568728 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042153232
158 rdf:type schema:CreativeWork
159 https://doi.org/10.3390/s120811113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046569859
160 rdf:type schema:CreativeWork
161 https://doi.org/10.3390/s150510350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006130021
162 rdf:type schema:CreativeWork
163 https://www.grid.ac/institutes/grid.419508.1 schema:alternateName University of Carthage
164 schema:name Digital Security Research Unit, Higher School of Communication of Tunis, Sup’Com, University of Carthage, Tunis, Tunisia
165 rdf:type schema:Organization
166 https://www.grid.ac/institutes/grid.462736.2 schema:alternateName XLIM
167 schema:name MathIS, XLIM (UMR CNRS 7252/Université de Limoges), Limoges, France
168 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...