Word clustering based on POS feature for efficient twitter sentiment analysis View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Yili Wang, KyungTae Kim, ByungJun Lee, Hee Yong Youn

ABSTRACT

With rapid growth of social networking service on Internet, huge amount of information are continuously generated in real time. As a result, sentiment analysis of online reviews and messages has become a popular research issue [1]. In this paper a novel modified Chi Square-based feature clustering and weighting scheme is proposed for the sentiment analysis of twitter message. Along with the part of speech tagging, the discriminability and dependency of the words in the tagged training dataset are taken into account in the clustering and weighting process. The multinomial Naïve Bayes model is also employed to handle redundant features, and the influence of emotional words is raised for maximizing the accuracy. Computer simulation with Sentiment 140 workload shows that the proposed scheme significantly outperforms four existing representative sentiment analysis schemes in terms of the accuracy regardless of the size of training and test data. More... »

PAGES

17

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13673-018-0140-y

DOI

http://dx.doi.org/10.1186/s13673-018-0140-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1104481246


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Sungkyunkwan University", 
          "id": "https://www.grid.ac/institutes/grid.264381.a", 
          "name": [
            "College of Information and Communication Engineering, Sungkyunkwan University, 440746, Suwon, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Yili", 
        "id": "sg:person.07522276174.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07522276174.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sungkyunkwan University", 
          "id": "https://www.grid.ac/institutes/grid.264381.a", 
          "name": [
            "College of Software, Sungkyunkwan University, 440746, Suwon, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "KyungTae", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sungkyunkwan University", 
          "id": "https://www.grid.ac/institutes/grid.264381.a", 
          "name": [
            "College of Information and Communication Engineering, Sungkyunkwan University, 440746, Suwon, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "ByungJun", 
        "id": "sg:person.012746151317.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012746151317.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sungkyunkwan University", 
          "id": "https://www.grid.ac/institutes/grid.264381.a", 
          "name": [
            "College of Software, Sungkyunkwan University, 440746, Suwon, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Youn", 
        "givenName": "Hee Yong", 
        "id": "sg:person.010415520333.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010415520333.43"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ins.2014.04.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006371483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/1220575.1220619", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009183071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patrec.2015.07.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012745731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03772063.2015.1021385", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014653085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11227-016-1907-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018654958", 
          "https://doi.org/10.1007/s11227-016-1907-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11227-016-1907-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018654958", 
          "https://doi.org/10.1007/s11227-016-1907-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.dss.2014.07.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022255658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/505282.505283", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023316280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2016.05.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024662072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2016.05.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024662072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-54906-9_17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029570614", 
          "https://doi.org/10.1007/978-3-642-54906-9_17"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0306-4573(88)90021-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032478827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jvcir.2016.07.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034872086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11227-016-1947-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037941823", 
          "https://doi.org/10.1007/s11227-016-1947-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11227-016-1947-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037941823", 
          "https://doi.org/10.1007/s11227-016-1947-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2010.08.066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040201715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11042-016-4153-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040658525", 
          "https://doi.org/10.1007/s11042-016-4153-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11042-016-4153-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040658525", 
          "https://doi.org/10.1007/s11042-016-4153-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-1-55860-377-6.50068-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041000917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11596042_113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042638197", 
          "https://doi.org/10.1007/11596042_113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11596042_113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042638197", 
          "https://doi.org/10.1007/11596042_113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chb.2015.01.075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047823233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0026683", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051853845", 
          "https://doi.org/10.1007/bfb0026683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ijl/3.4.235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059677392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cc.2014.6825268", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061256358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cc.2014.6825268", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061256358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jstars.2016.2542193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061334193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbc.2016.2580920", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061522542"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tce.2015.7389797", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061547816"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnnls.2016.2527796", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061719133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnnls.2016.2544779", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061719160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpds.2015.2401003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061754820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpds.2015.2506573", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061754991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3745/jips.04.0023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071359225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00500-017-2513-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083823698", 
          "https://doi.org/10.1007/s00500-017-2513-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00500-017-2513-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083823698", 
          "https://doi.org/10.1007/s00500-017-2513-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13673-017-0097-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085271451", 
          "https://doi.org/10.1186/s13673-017-0097-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13673-017-0097-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085271451", 
          "https://doi.org/10.1186/s13673-017-0097-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13673-017-0116-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091630354", 
          "https://doi.org/10.1186/s13673-017-0116-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/csitss.2016.7779444", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093215257"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccrd.2010.160", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093330325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ccis.2016.7790245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093971940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/socialsec2015.9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094025879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iisa.2013.6623713", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094342902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/csitss.2016.7779369", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094350855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iisa.2016.7785380", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094656410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/sita.2016.7772289", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095200295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/csci.2015.44", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095225392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icmic.2016.7804223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095328134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iscbi.2016.7743280", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095335233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icgec.2010.76", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095477838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iisa.2016.7785373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095577638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/1118693.1118704", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099201585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/1118693.1118704", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099201585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-981-10-7605-3_72", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099720814", 
          "https://doi.org/10.1007/978-981-10-7605-3_72"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "With rapid growth of social networking service on Internet, huge amount of information are continuously generated in real time. As a result, sentiment analysis of online reviews and messages has become a popular research issue [1]. In this paper a novel modified Chi Square-based feature clustering and weighting scheme is proposed for the sentiment analysis of twitter message. Along with the part of speech tagging, the discriminability and dependency of the words in the tagged training dataset are taken into account in the clustering and weighting process. The multinomial Na\u00efve Bayes model is also employed to handle redundant features, and the influence of emotional words is raised for maximizing the accuracy. Computer simulation with Sentiment 140 workload shows that the proposed scheme significantly outperforms four existing representative sentiment analysis schemes in terms of the accuracy regardless of the size of training and test data.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s13673-018-0140-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136381", 
        "issn": [
          "2192-1962", 
          "2192-1962"
        ], 
        "name": "Human-centric Computing and Information Sciences", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Word clustering based on POS feature for efficient twitter sentiment analysis", 
    "pagination": "17", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a742b07623f27dc956dd24662259754b3225a569b28d15b322fe0a3cdd5b2955"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13673-018-0140-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1104481246"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13673-018-0140-y", 
      "https://app.dimensions.ai/details/publication/pub.1104481246"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000348_0000000348/records_54319_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs13673-018-0140-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13673-018-0140-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13673-018-0140-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13673-018-0140-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13673-018-0140-y'


 

This table displays all metadata directly associated to this object as RDF triples.

229 TRIPLES      21 PREDICATES      73 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13673-018-0140-y schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N07a3a8223184489db0b87f6e5a2d2b1a
4 schema:citation sg:pub.10.1007/11596042_113
5 sg:pub.10.1007/978-3-642-54906-9_17
6 sg:pub.10.1007/978-981-10-7605-3_72
7 sg:pub.10.1007/bfb0026683
8 sg:pub.10.1007/s00500-017-2513-y
9 sg:pub.10.1007/s11042-016-4153-0
10 sg:pub.10.1007/s11227-016-1907-4
11 sg:pub.10.1007/s11227-016-1947-9
12 sg:pub.10.1186/s13673-017-0097-2
13 sg:pub.10.1186/s13673-017-0116-3
14 https://doi.org/10.1016/0306-4573(88)90021-0
15 https://doi.org/10.1016/b978-1-55860-377-6.50068-2
16 https://doi.org/10.1016/j.chb.2015.01.075
17 https://doi.org/10.1016/j.dss.2014.07.003
18 https://doi.org/10.1016/j.eswa.2010.08.066
19 https://doi.org/10.1016/j.ins.2014.04.034
20 https://doi.org/10.1016/j.jvcir.2016.07.018
21 https://doi.org/10.1016/j.neucom.2016.05.020
22 https://doi.org/10.1016/j.patrec.2015.07.007
23 https://doi.org/10.1080/03772063.2015.1021385
24 https://doi.org/10.1093/ijl/3.4.235
25 https://doi.org/10.1109/cc.2014.6825268
26 https://doi.org/10.1109/ccis.2016.7790245
27 https://doi.org/10.1109/csci.2015.44
28 https://doi.org/10.1109/csitss.2016.7779369
29 https://doi.org/10.1109/csitss.2016.7779444
30 https://doi.org/10.1109/iccrd.2010.160
31 https://doi.org/10.1109/icgec.2010.76
32 https://doi.org/10.1109/icmic.2016.7804223
33 https://doi.org/10.1109/iisa.2013.6623713
34 https://doi.org/10.1109/iisa.2016.7785373
35 https://doi.org/10.1109/iisa.2016.7785380
36 https://doi.org/10.1109/iscbi.2016.7743280
37 https://doi.org/10.1109/jstars.2016.2542193
38 https://doi.org/10.1109/sita.2016.7772289
39 https://doi.org/10.1109/socialsec2015.9
40 https://doi.org/10.1109/tbc.2016.2580920
41 https://doi.org/10.1109/tce.2015.7389797
42 https://doi.org/10.1109/tnnls.2016.2527796
43 https://doi.org/10.1109/tnnls.2016.2544779
44 https://doi.org/10.1109/tpds.2015.2401003
45 https://doi.org/10.1109/tpds.2015.2506573
46 https://doi.org/10.1145/505282.505283
47 https://doi.org/10.3115/1118693.1118704
48 https://doi.org/10.3115/1220575.1220619
49 https://doi.org/10.3745/jips.04.0023
50 schema:datePublished 2018-12
51 schema:datePublishedReg 2018-12-01
52 schema:description With rapid growth of social networking service on Internet, huge amount of information are continuously generated in real time. As a result, sentiment analysis of online reviews and messages has become a popular research issue [1]. In this paper a novel modified Chi Square-based feature clustering and weighting scheme is proposed for the sentiment analysis of twitter message. Along with the part of speech tagging, the discriminability and dependency of the words in the tagged training dataset are taken into account in the clustering and weighting process. The multinomial Naïve Bayes model is also employed to handle redundant features, and the influence of emotional words is raised for maximizing the accuracy. Computer simulation with Sentiment 140 workload shows that the proposed scheme significantly outperforms four existing representative sentiment analysis schemes in terms of the accuracy regardless of the size of training and test data.
53 schema:genre research_article
54 schema:inLanguage en
55 schema:isAccessibleForFree true
56 schema:isPartOf N30784d46d7f647dd9ec3be3e6a461f3b
57 N58fd7bc58a994788a5f09438b60a2638
58 sg:journal.1136381
59 schema:name Word clustering based on POS feature for efficient twitter sentiment analysis
60 schema:pagination 17
61 schema:productId N3fdadfbae69c44e3bf805f5f05d6393e
62 N5747028791244284b86b8a25d2f5a426
63 N70fefe4ce2194c6e917142473358afab
64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104481246
65 https://doi.org/10.1186/s13673-018-0140-y
66 schema:sdDatePublished 2019-04-11T10:19
67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
68 schema:sdPublisher N979d1d495b1148e7914d6bc1dad10dfd
69 schema:url https://link.springer.com/10.1186%2Fs13673-018-0140-y
70 sgo:license sg:explorer/license/
71 sgo:sdDataset articles
72 rdf:type schema:ScholarlyArticle
73 N07a3a8223184489db0b87f6e5a2d2b1a rdf:first sg:person.07522276174.23
74 rdf:rest N4848732f277c4e2f975efdd7d097a45b
75 N0c1c84d6c8694e098fb6f076984175d4 rdf:first sg:person.012746151317.35
76 rdf:rest Nf9f759a0d5504d2e9571692d319bbfb1
77 N30784d46d7f647dd9ec3be3e6a461f3b schema:issueNumber 1
78 rdf:type schema:PublicationIssue
79 N3fdadfbae69c44e3bf805f5f05d6393e schema:name doi
80 schema:value 10.1186/s13673-018-0140-y
81 rdf:type schema:PropertyValue
82 N4848732f277c4e2f975efdd7d097a45b rdf:first N5041152af5c248049b72d019bda81dfe
83 rdf:rest N0c1c84d6c8694e098fb6f076984175d4
84 N5041152af5c248049b72d019bda81dfe schema:affiliation https://www.grid.ac/institutes/grid.264381.a
85 schema:familyName Kim
86 schema:givenName KyungTae
87 rdf:type schema:Person
88 N5747028791244284b86b8a25d2f5a426 schema:name readcube_id
89 schema:value a742b07623f27dc956dd24662259754b3225a569b28d15b322fe0a3cdd5b2955
90 rdf:type schema:PropertyValue
91 N58fd7bc58a994788a5f09438b60a2638 schema:volumeNumber 8
92 rdf:type schema:PublicationVolume
93 N70fefe4ce2194c6e917142473358afab schema:name dimensions_id
94 schema:value pub.1104481246
95 rdf:type schema:PropertyValue
96 N979d1d495b1148e7914d6bc1dad10dfd schema:name Springer Nature - SN SciGraph project
97 rdf:type schema:Organization
98 Nf9f759a0d5504d2e9571692d319bbfb1 rdf:first sg:person.010415520333.43
99 rdf:rest rdf:nil
100 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
101 schema:name Information and Computing Sciences
102 rdf:type schema:DefinedTerm
103 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
104 schema:name Artificial Intelligence and Image Processing
105 rdf:type schema:DefinedTerm
106 sg:journal.1136381 schema:issn 2192-1962
107 schema:name Human-centric Computing and Information Sciences
108 rdf:type schema:Periodical
109 sg:person.010415520333.43 schema:affiliation https://www.grid.ac/institutes/grid.264381.a
110 schema:familyName Youn
111 schema:givenName Hee Yong
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010415520333.43
113 rdf:type schema:Person
114 sg:person.012746151317.35 schema:affiliation https://www.grid.ac/institutes/grid.264381.a
115 schema:familyName Lee
116 schema:givenName ByungJun
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012746151317.35
118 rdf:type schema:Person
119 sg:person.07522276174.23 schema:affiliation https://www.grid.ac/institutes/grid.264381.a
120 schema:familyName Wang
121 schema:givenName Yili
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07522276174.23
123 rdf:type schema:Person
124 sg:pub.10.1007/11596042_113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042638197
125 https://doi.org/10.1007/11596042_113
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/978-3-642-54906-9_17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029570614
128 https://doi.org/10.1007/978-3-642-54906-9_17
129 rdf:type schema:CreativeWork
130 sg:pub.10.1007/978-981-10-7605-3_72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099720814
131 https://doi.org/10.1007/978-981-10-7605-3_72
132 rdf:type schema:CreativeWork
133 sg:pub.10.1007/bfb0026683 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051853845
134 https://doi.org/10.1007/bfb0026683
135 rdf:type schema:CreativeWork
136 sg:pub.10.1007/s00500-017-2513-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1083823698
137 https://doi.org/10.1007/s00500-017-2513-y
138 rdf:type schema:CreativeWork
139 sg:pub.10.1007/s11042-016-4153-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040658525
140 https://doi.org/10.1007/s11042-016-4153-0
141 rdf:type schema:CreativeWork
142 sg:pub.10.1007/s11227-016-1907-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018654958
143 https://doi.org/10.1007/s11227-016-1907-4
144 rdf:type schema:CreativeWork
145 sg:pub.10.1007/s11227-016-1947-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037941823
146 https://doi.org/10.1007/s11227-016-1947-9
147 rdf:type schema:CreativeWork
148 sg:pub.10.1186/s13673-017-0097-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085271451
149 https://doi.org/10.1186/s13673-017-0097-2
150 rdf:type schema:CreativeWork
151 sg:pub.10.1186/s13673-017-0116-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091630354
152 https://doi.org/10.1186/s13673-017-0116-3
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/0306-4573(88)90021-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032478827
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/b978-1-55860-377-6.50068-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041000917
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.chb.2015.01.075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047823233
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.dss.2014.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022255658
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.eswa.2010.08.066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040201715
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.ins.2014.04.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006371483
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.jvcir.2016.07.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034872086
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.neucom.2016.05.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024662072
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.patrec.2015.07.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012745731
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1080/03772063.2015.1021385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014653085
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1093/ijl/3.4.235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059677392
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1109/cc.2014.6825268 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061256358
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1109/ccis.2016.7790245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093971940
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1109/csci.2015.44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095225392
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1109/csitss.2016.7779369 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094350855
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1109/csitss.2016.7779444 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093215257
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1109/iccrd.2010.160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093330325
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1109/icgec.2010.76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095477838
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1109/icmic.2016.7804223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095328134
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1109/iisa.2013.6623713 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094342902
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1109/iisa.2016.7785373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095577638
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1109/iisa.2016.7785380 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094656410
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1109/iscbi.2016.7743280 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095335233
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1109/jstars.2016.2542193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061334193
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1109/sita.2016.7772289 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095200295
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1109/socialsec2015.9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094025879
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1109/tbc.2016.2580920 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061522542
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1109/tce.2015.7389797 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061547816
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1109/tnnls.2016.2527796 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061719133
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1109/tnnls.2016.2544779 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061719160
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1109/tpds.2015.2401003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061754820
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1109/tpds.2015.2506573 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061754991
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1145/505282.505283 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023316280
219 rdf:type schema:CreativeWork
220 https://doi.org/10.3115/1118693.1118704 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099201585
221 rdf:type schema:CreativeWork
222 https://doi.org/10.3115/1220575.1220619 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009183071
223 rdf:type schema:CreativeWork
224 https://doi.org/10.3745/jips.04.0023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071359225
225 rdf:type schema:CreativeWork
226 https://www.grid.ac/institutes/grid.264381.a schema:alternateName Sungkyunkwan University
227 schema:name College of Information and Communication Engineering, Sungkyunkwan University, 440746, Suwon, Korea
228 College of Software, Sungkyunkwan University, 440746, Suwon, Korea
229 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...