Illumination invariant head pose estimation using random forests classifier and binary pattern run length matrix View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-12

AUTHORS

Hyunduk Kim, Sang-Heon Lee, Myoung-Kyu Sohn, Dong-Ju Kim

ABSTRACT

In this paper, a novel approach for head pose estimation in gray-level images is presented. In the proposed algorithm, two techniques were employed. In order to deal with the large set of training data, the method of Random Forests was employed; this is a state-of-the-art classification algorithm in the field of computer vision. In order to make this system robust in terms of illumination, a Binary Pattern Run Length matrix was employed; this matrix is combination of Binary Pattern and a Run Length matrix. The binary pattern was calculated by randomly selected operator. In order to extract feature of training patch, we calculate statistical texture features from the Binary Pattern Run Length matrix. Moreover we perform some techniques to real-time operation, such as control the number of binary test. Experimental results show that our algorithm is efficient and robust against illumination change. More... »

PAGES

9

References to SciGraph publications

  • 2006. Synergistic Face Detection and Pose Estimation with Energy-Based Models in TOWARD CATEGORY-LEVEL OBJECT RECOGNITION
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s13673-014-0009-7

    DOI

    http://dx.doi.org/10.1186/s13673-014-0009-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1020769240


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Daegu Gyeongbuk Institute of Science and Technology", 
              "id": "https://www.grid.ac/institutes/grid.417736.0", 
              "name": [
                "Department of Convergence, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 50-1 Sang-Ri, Hyeongpung-Myeon, Dalseong-Gun, 711-873, Daegu, South Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kim", 
            "givenName": "Hyunduk", 
            "id": "sg:person.013112302371.14", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013112302371.14"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Daegu Gyeongbuk Institute of Science and Technology", 
              "id": "https://www.grid.ac/institutes/grid.417736.0", 
              "name": [
                "Department of Convergence, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 50-1 Sang-Ri, Hyeongpung-Myeon, Dalseong-Gun, 711-873, Daegu, South Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lee", 
            "givenName": "Sang-Heon", 
            "id": "sg:person.014440551203.46", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014440551203.46"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Daegu Gyeongbuk Institute of Science and Technology", 
              "id": "https://www.grid.ac/institutes/grid.417736.0", 
              "name": [
                "Department of Convergence, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 50-1 Sang-Ri, Hyeongpung-Myeon, Dalseong-Gun, 711-873, Daegu, South Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sohn", 
            "givenName": "Myoung-Kyu", 
            "id": "sg:person.014430471713.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014430471713.06"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Daegu Gyeongbuk Institute of Science and Technology", 
              "id": "https://www.grid.ac/institutes/grid.417736.0", 
              "name": [
                "Department of Convergence, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 50-1 Sang-Ri, Hyeongpung-Myeon, Dalseong-Gun, 711-873, Daegu, South Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kim", 
            "givenName": "Dong-Ju", 
            "id": "sg:person.016023432713.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016023432713.32"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/11957959_10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014409254", 
              "https://doi.org/10.1007/11957959_10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11957959_10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014409254", 
              "https://doi.org/10.1007/11957959_10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icpr.2010.234", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093188924"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icnc.2008.94", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093679842"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/ichr.2007.4813889", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093899532"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icip.2010.5652915", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094398623"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2007.383280", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094648010"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/afgr.2008.4813396", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094657437"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/afgr.2008.4813429", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094853504"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icip.2010.5652374", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094863473"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2011.5995683", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094875869"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/afgr.2000.840650", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095116399"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2011.5995458", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095352593"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2014-12", 
        "datePublishedReg": "2014-12-01", 
        "description": "In this paper, a novel approach for head pose estimation in gray-level images is presented. In the proposed algorithm, two techniques were employed. In order to deal with the large set of training data, the method of Random Forests was employed; this is a state-of-the-art classification algorithm in the field of computer vision. In order to make this system robust in terms of illumination, a Binary Pattern Run Length matrix was employed; this matrix is combination of Binary Pattern and a Run Length matrix. The binary pattern was calculated by randomly selected operator. In order to extract feature of training patch, we calculate statistical texture features from the Binary Pattern Run Length matrix. Moreover we perform some techniques to real-time operation, such as control the number of binary test. Experimental results show that our algorithm is efficient and robust against illumination change.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/s13673-014-0009-7", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136381", 
            "issn": [
              "2192-1962", 
              "2192-1962"
            ], 
            "name": "Human-centric Computing and Information Sciences", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "4"
          }
        ], 
        "name": "Illumination invariant head pose estimation using random forests classifier and binary pattern run length matrix", 
        "pagination": "9", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "62f60d5f911059c681adb54d12bfe66589637c23ea3546886139d86c83df7416"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s13673-014-0009-7"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1020769240"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s13673-014-0009-7", 
          "https://app.dimensions.ai/details/publication/pub.1020769240"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:10", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88247_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1186%2Fs13673-014-0009-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13673-014-0009-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13673-014-0009-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13673-014-0009-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13673-014-0009-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    118 TRIPLES      21 PREDICATES      39 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s13673-014-0009-7 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N599c385e69444835b8f28f253b478e5c
    4 schema:citation sg:pub.10.1007/11957959_10
    5 https://doi.org/10.1109/afgr.2000.840650
    6 https://doi.org/10.1109/afgr.2008.4813396
    7 https://doi.org/10.1109/afgr.2008.4813429
    8 https://doi.org/10.1109/cvpr.2007.383280
    9 https://doi.org/10.1109/cvpr.2011.5995458
    10 https://doi.org/10.1109/cvpr.2011.5995683
    11 https://doi.org/10.1109/ichr.2007.4813889
    12 https://doi.org/10.1109/icip.2010.5652374
    13 https://doi.org/10.1109/icip.2010.5652915
    14 https://doi.org/10.1109/icnc.2008.94
    15 https://doi.org/10.1109/icpr.2010.234
    16 schema:datePublished 2014-12
    17 schema:datePublishedReg 2014-12-01
    18 schema:description In this paper, a novel approach for head pose estimation in gray-level images is presented. In the proposed algorithm, two techniques were employed. In order to deal with the large set of training data, the method of Random Forests was employed; this is a state-of-the-art classification algorithm in the field of computer vision. In order to make this system robust in terms of illumination, a Binary Pattern Run Length matrix was employed; this matrix is combination of Binary Pattern and a Run Length matrix. The binary pattern was calculated by randomly selected operator. In order to extract feature of training patch, we calculate statistical texture features from the Binary Pattern Run Length matrix. Moreover we perform some techniques to real-time operation, such as control the number of binary test. Experimental results show that our algorithm is efficient and robust against illumination change.
    19 schema:genre research_article
    20 schema:inLanguage en
    21 schema:isAccessibleForFree true
    22 schema:isPartOf N8f95347eb1a548b3917f08bccd23dc4b
    23 Nda70b9f781794140909ef668860df884
    24 sg:journal.1136381
    25 schema:name Illumination invariant head pose estimation using random forests classifier and binary pattern run length matrix
    26 schema:pagination 9
    27 schema:productId N8f5bfebcde994f32b3b5cfa0f6962f88
    28 N96fb81c4c354470185ba4031b64b94d4
    29 Nbd16d03e3c5249db98221b0d030a6043
    30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020769240
    31 https://doi.org/10.1186/s13673-014-0009-7
    32 schema:sdDatePublished 2019-04-11T13:10
    33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    34 schema:sdPublisher N221e3f11f422468499a69c5c17509af0
    35 schema:url http://link.springer.com/10.1186%2Fs13673-014-0009-7
    36 sgo:license sg:explorer/license/
    37 sgo:sdDataset articles
    38 rdf:type schema:ScholarlyArticle
    39 N221e3f11f422468499a69c5c17509af0 schema:name Springer Nature - SN SciGraph project
    40 rdf:type schema:Organization
    41 N49277d050d9845cc9b7fb271351bbc76 rdf:first sg:person.014430471713.06
    42 rdf:rest N57b42ec48c454f9c8df9c1e806c1913d
    43 N57b42ec48c454f9c8df9c1e806c1913d rdf:first sg:person.016023432713.32
    44 rdf:rest rdf:nil
    45 N599c385e69444835b8f28f253b478e5c rdf:first sg:person.013112302371.14
    46 rdf:rest Nbeb809d3f7f4405bae546dc21a952ebe
    47 N8f5bfebcde994f32b3b5cfa0f6962f88 schema:name doi
    48 schema:value 10.1186/s13673-014-0009-7
    49 rdf:type schema:PropertyValue
    50 N8f95347eb1a548b3917f08bccd23dc4b schema:volumeNumber 4
    51 rdf:type schema:PublicationVolume
    52 N96fb81c4c354470185ba4031b64b94d4 schema:name dimensions_id
    53 schema:value pub.1020769240
    54 rdf:type schema:PropertyValue
    55 Nbd16d03e3c5249db98221b0d030a6043 schema:name readcube_id
    56 schema:value 62f60d5f911059c681adb54d12bfe66589637c23ea3546886139d86c83df7416
    57 rdf:type schema:PropertyValue
    58 Nbeb809d3f7f4405bae546dc21a952ebe rdf:first sg:person.014440551203.46
    59 rdf:rest N49277d050d9845cc9b7fb271351bbc76
    60 Nda70b9f781794140909ef668860df884 schema:issueNumber 1
    61 rdf:type schema:PublicationIssue
    62 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    63 schema:name Information and Computing Sciences
    64 rdf:type schema:DefinedTerm
    65 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    66 schema:name Artificial Intelligence and Image Processing
    67 rdf:type schema:DefinedTerm
    68 sg:journal.1136381 schema:issn 2192-1962
    69 schema:name Human-centric Computing and Information Sciences
    70 rdf:type schema:Periodical
    71 sg:person.013112302371.14 schema:affiliation https://www.grid.ac/institutes/grid.417736.0
    72 schema:familyName Kim
    73 schema:givenName Hyunduk
    74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013112302371.14
    75 rdf:type schema:Person
    76 sg:person.014430471713.06 schema:affiliation https://www.grid.ac/institutes/grid.417736.0
    77 schema:familyName Sohn
    78 schema:givenName Myoung-Kyu
    79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014430471713.06
    80 rdf:type schema:Person
    81 sg:person.014440551203.46 schema:affiliation https://www.grid.ac/institutes/grid.417736.0
    82 schema:familyName Lee
    83 schema:givenName Sang-Heon
    84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014440551203.46
    85 rdf:type schema:Person
    86 sg:person.016023432713.32 schema:affiliation https://www.grid.ac/institutes/grid.417736.0
    87 schema:familyName Kim
    88 schema:givenName Dong-Ju
    89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016023432713.32
    90 rdf:type schema:Person
    91 sg:pub.10.1007/11957959_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014409254
    92 https://doi.org/10.1007/11957959_10
    93 rdf:type schema:CreativeWork
    94 https://doi.org/10.1109/afgr.2000.840650 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095116399
    95 rdf:type schema:CreativeWork
    96 https://doi.org/10.1109/afgr.2008.4813396 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094657437
    97 rdf:type schema:CreativeWork
    98 https://doi.org/10.1109/afgr.2008.4813429 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094853504
    99 rdf:type schema:CreativeWork
    100 https://doi.org/10.1109/cvpr.2007.383280 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094648010
    101 rdf:type schema:CreativeWork
    102 https://doi.org/10.1109/cvpr.2011.5995458 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095352593
    103 rdf:type schema:CreativeWork
    104 https://doi.org/10.1109/cvpr.2011.5995683 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094875869
    105 rdf:type schema:CreativeWork
    106 https://doi.org/10.1109/ichr.2007.4813889 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093899532
    107 rdf:type schema:CreativeWork
    108 https://doi.org/10.1109/icip.2010.5652374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094863473
    109 rdf:type schema:CreativeWork
    110 https://doi.org/10.1109/icip.2010.5652915 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094398623
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1109/icnc.2008.94 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093679842
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1109/icpr.2010.234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093188924
    115 rdf:type schema:CreativeWork
    116 https://www.grid.ac/institutes/grid.417736.0 schema:alternateName Daegu Gyeongbuk Institute of Science and Technology
    117 schema:name Department of Convergence, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 50-1 Sang-Ri, Hyeongpung-Myeon, Dalseong-Gun, 711-873, Daegu, South Korea
    118 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...