Observer-based event-triggered finite-time consensus for general linear leader-follower multi-agent systems View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-05-12

AUTHORS

Yiping Luo, Jialong Pang

ABSTRACT

In this study, the event-triggered finite-time consensus problem of a class of general linear leader-follower multi-agent systems with unmeasurable states is investigated. First, an observer-based distributed event-triggered strategy is proposed in view of introducing an external dynamic threshold that is independent of the state variables. Second, the Lyapunov method and proposed event-triggered strategy are implemented as the control scheme to ensure that the tracking error can converge to the origin within a finite time under given conditions. Analytical findings indicate that the Zeno behavior can be avoided by selecting the appropriate parameters. Finally, a numerical simulation is implemented, and the results verify the effectiveness of the proposed method. More... »

PAGES

40

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13662-022-03711-x

DOI

http://dx.doi.org/10.1186/s13662-022-03711-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1147834019


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Hunan Institute of Engineering, Fuxing Road 88, Xiangtan, China", 
          "id": "http://www.grid.ac/institutes/grid.459468.2", 
          "name": [
            "Hunan Institute of Engineering, Fuxing Road 88, Xiangtan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Luo", 
        "givenName": "Yiping", 
        "id": "sg:person.013322155423.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013322155423.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hunan Institute of Engineering, Fuxing Road 88, Xiangtan, China", 
          "id": "http://www.grid.ac/institutes/grid.459468.2", 
          "name": [
            "Hunan Institute of Engineering, Fuxing Road 88, Xiangtan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pang", 
        "givenName": "Jialong", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11071-020-06096-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1134426127", 
          "https://doi.org/10.1007/s11071-020-06096-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12555-018-0666-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1112732124", 
          "https://doi.org/10.1007/s12555-018-0666-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-05-12", 
    "datePublishedReg": "2022-05-12", 
    "description": "In this study, the event-triggered finite-time consensus problem of a class of general linear leader-follower multi-agent systems with unmeasurable states is investigated. First, an observer-based distributed event-triggered strategy is proposed in view of introducing an external dynamic threshold that is independent of the state variables. Second, the Lyapunov method and proposed event-triggered strategy are implemented as the control scheme to ensure that the tracking error can converge to the origin within a finite time under given conditions. Analytical findings indicate that the Zeno behavior can be avoided by selecting the appropriate parameters. Finally, a numerical simulation is implemented, and the results verify the effectiveness of the proposed method.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s13662-022-03711-x", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8898804", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1421475", 
        "issn": [
          "2731-4235"
        ], 
        "name": "Advances in Continuous and Discrete Models", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2022"
      }
    ], 
    "keywords": [
      "event-triggered strategy", 
      "leader-follower multi-agent systems", 
      "finite-time consensus problem", 
      "tracking error", 
      "control scheme", 
      "unmeasurable states", 
      "event-triggered finite-time consensus", 
      "numerical simulations", 
      "finite-time consensus", 
      "Lyapunov method", 
      "state variables", 
      "finite time", 
      "multi-agent systems", 
      "appropriate parameters", 
      "Zeno behavior", 
      "dynamic threshold", 
      "simulations", 
      "system", 
      "method", 
      "consensus problem", 
      "analytical findings", 
      "parameters", 
      "error", 
      "scheme", 
      "behavior", 
      "conditions", 
      "effectiveness", 
      "results", 
      "problem", 
      "strategies", 
      "time", 
      "threshold", 
      "state", 
      "variables", 
      "study", 
      "view", 
      "class", 
      "origin", 
      "findings", 
      "consensus"
    ], 
    "name": "Observer-based event-triggered finite-time consensus for general linear leader-follower multi-agent systems", 
    "pagination": "40", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1147834019"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13662-022-03711-x"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13662-022-03711-x", 
      "https://app.dimensions.ai/details/publication/pub.1147834019"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-08-04T17:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_942.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s13662-022-03711-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13662-022-03711-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13662-022-03711-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13662-022-03711-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13662-022-03711-x'


 

This table displays all metadata directly associated to this object as RDF triples.

112 TRIPLES      21 PREDICATES      66 URIs      56 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13662-022-03711-x schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N5776e7f915a84c1ebbcf5db8d323e8d0
4 schema:citation sg:pub.10.1007/s11071-020-06096-2
5 sg:pub.10.1007/s12555-018-0666-9
6 schema:datePublished 2022-05-12
7 schema:datePublishedReg 2022-05-12
8 schema:description In this study, the event-triggered finite-time consensus problem of a class of general linear leader-follower multi-agent systems with unmeasurable states is investigated. First, an observer-based distributed event-triggered strategy is proposed in view of introducing an external dynamic threshold that is independent of the state variables. Second, the Lyapunov method and proposed event-triggered strategy are implemented as the control scheme to ensure that the tracking error can converge to the origin within a finite time under given conditions. Analytical findings indicate that the Zeno behavior can be avoided by selecting the appropriate parameters. Finally, a numerical simulation is implemented, and the results verify the effectiveness of the proposed method.
9 schema:genre article
10 schema:isAccessibleForFree true
11 schema:isPartOf N2597182e5b404c7e90ef97d80faf3994
12 Nc038681f9cab4576b74cce7b0cb621ea
13 sg:journal.1421475
14 schema:keywords Lyapunov method
15 Zeno behavior
16 analytical findings
17 appropriate parameters
18 behavior
19 class
20 conditions
21 consensus
22 consensus problem
23 control scheme
24 dynamic threshold
25 effectiveness
26 error
27 event-triggered finite-time consensus
28 event-triggered strategy
29 findings
30 finite time
31 finite-time consensus
32 finite-time consensus problem
33 leader-follower multi-agent systems
34 method
35 multi-agent systems
36 numerical simulations
37 origin
38 parameters
39 problem
40 results
41 scheme
42 simulations
43 state
44 state variables
45 strategies
46 study
47 system
48 threshold
49 time
50 tracking error
51 unmeasurable states
52 variables
53 view
54 schema:name Observer-based event-triggered finite-time consensus for general linear leader-follower multi-agent systems
55 schema:pagination 40
56 schema:productId N7496b77bc222484ebe20d899fecc2924
57 N8aed64168b75458aa6af36278d0736f2
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1147834019
59 https://doi.org/10.1186/s13662-022-03711-x
60 schema:sdDatePublished 2022-08-04T17:12
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher Nd211d499548e49c696f6829af65809c8
63 schema:url https://doi.org/10.1186/s13662-022-03711-x
64 sgo:license sg:explorer/license/
65 sgo:sdDataset articles
66 rdf:type schema:ScholarlyArticle
67 N2597182e5b404c7e90ef97d80faf3994 schema:issueNumber 1
68 rdf:type schema:PublicationIssue
69 N3f0c082b4cb34040b2643d88774c766b schema:affiliation grid-institutes:grid.459468.2
70 schema:familyName Pang
71 schema:givenName Jialong
72 rdf:type schema:Person
73 N5776e7f915a84c1ebbcf5db8d323e8d0 rdf:first sg:person.013322155423.99
74 rdf:rest N8cf586db232042a5a4d7de0575c5c2ba
75 N7496b77bc222484ebe20d899fecc2924 schema:name dimensions_id
76 schema:value pub.1147834019
77 rdf:type schema:PropertyValue
78 N8aed64168b75458aa6af36278d0736f2 schema:name doi
79 schema:value 10.1186/s13662-022-03711-x
80 rdf:type schema:PropertyValue
81 N8cf586db232042a5a4d7de0575c5c2ba rdf:first N3f0c082b4cb34040b2643d88774c766b
82 rdf:rest rdf:nil
83 Nc038681f9cab4576b74cce7b0cb621ea schema:volumeNumber 2022
84 rdf:type schema:PublicationVolume
85 Nd211d499548e49c696f6829af65809c8 schema:name Springer Nature - SN SciGraph project
86 rdf:type schema:Organization
87 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
88 schema:name Information and Computing Sciences
89 rdf:type schema:DefinedTerm
90 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
91 schema:name Artificial Intelligence and Image Processing
92 rdf:type schema:DefinedTerm
93 sg:grant.8898804 http://pending.schema.org/fundedItem sg:pub.10.1186/s13662-022-03711-x
94 rdf:type schema:MonetaryGrant
95 sg:journal.1421475 schema:issn 2731-4235
96 schema:name Advances in Continuous and Discrete Models
97 schema:publisher Springer Nature
98 rdf:type schema:Periodical
99 sg:person.013322155423.99 schema:affiliation grid-institutes:grid.459468.2
100 schema:familyName Luo
101 schema:givenName Yiping
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013322155423.99
103 rdf:type schema:Person
104 sg:pub.10.1007/s11071-020-06096-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1134426127
105 https://doi.org/10.1007/s11071-020-06096-2
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/s12555-018-0666-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112732124
108 https://doi.org/10.1007/s12555-018-0666-9
109 rdf:type schema:CreativeWork
110 grid-institutes:grid.459468.2 schema:alternateName Hunan Institute of Engineering, Fuxing Road 88, Xiangtan, China
111 schema:name Hunan Institute of Engineering, Fuxing Road 88, Xiangtan, China
112 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...