Numerical investigation of fractional-order Kersten–Krasil’shchik coupled KdV–mKdV system with Atangana–Baleanu derivative View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-05-02

AUTHORS

Naveed Iqbal, Thongchai Botmart, Wael W. Mohammed, Akbar Ali

ABSTRACT

In this article, we present a fractional Kersten–Krasil’shchik coupled KdV-mKdV nonlinear model associated with newly introduced Atangana–Baleanu derivative of fractional order which uses Mittag-Leffler function as a nonsingular and nonlocal kernel. We investigate the nonlinear behavior of multi-component plasma. For this effective approach, named homotopy perturbation, transformation approach is suggested. This scheme of nonlinear model generally occurs as a characterization of waves in traffic flow, multi-component plasmas, electrodynamics, electromagnetism, shallow water waves, elastic media, etc. The main objective of this study is to provide a new class of methods, which requires not using small variables for finding estimated solution of fractional coupled frameworks and unrealistic factors and eliminate linearization. Analytical simulation represents that the suggested method is effective, accurate, and straightforward to use to a wide range of physical frameworks. This analysis indicates that analytical simulation obtained by the homotopy perturbation transform method is very efficient and precise for evaluation of the nonlinear behavior of the scheme. This result also suggests that the homotopy perturbation transform method is much simpler and easier, more convenient and effective than other available mathematical techniques. More... »

PAGES

37

References to SciGraph publications

  • 2014-01-02. The twisted Daehee numbers and polynomials in ADVANCES IN CONTINUOUS AND DISCRETE MODELS
  • 2016-07-11. Bilinear approach to quasi-periodic wave solutions of the Kersten-Krasil’shchik coupled KdV-mKdV system in BOUNDARY VALUE PROBLEMS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s13662-022-03709-5

    DOI

    http://dx.doi.org/10.1186/s13662-022-03709-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1147550690


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Numerical and Computational Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Mathematics, College of Science, University of Ha\u2019il, 2440, Ha\u2019il, Saudi Arabia", 
              "id": "http://www.grid.ac/institutes/grid.56302.32", 
              "name": [
                "Department of Mathematics, College of Science, University of Ha\u2019il, 2440, Ha\u2019il, Saudi Arabia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Iqbal", 
            "givenName": "Naveed", 
            "id": "sg:person.014405045141.63", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014405045141.63"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mathematics, Faculty of Science, Khon Kaen University, 40002, Khon Kaen, Thailand", 
              "id": "http://www.grid.ac/institutes/grid.9786.0", 
              "name": [
                "Department of Mathematics, Faculty of Science, Khon Kaen University, 40002, Khon Kaen, Thailand"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Botmart", 
            "givenName": "Thongchai", 
            "id": "sg:person.010375440023.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010375440023.50"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Faculty of Science, Mansoura University, 35516, Mansoura, Egypt", 
              "id": "http://www.grid.ac/institutes/grid.10251.37", 
              "name": [
                "Department of Mathematics, College of Science, University of Ha\u2019il, 2440, Ha\u2019il, Saudi Arabia", 
                "Faculty of Science, Mansoura University, 35516, Mansoura, Egypt"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mohammed", 
            "givenName": "Wael W.", 
            "id": "sg:person.016150005527.64", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016150005527.64"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mathematics, College of Science, University of Ha\u2019il, 2440, Ha\u2019il, Saudi Arabia", 
              "id": "http://www.grid.ac/institutes/grid.56302.32", 
              "name": [
                "Department of Mathematics, College of Science, University of Ha\u2019il, 2440, Ha\u2019il, Saudi Arabia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ali", 
            "givenName": "Akbar", 
            "id": "sg:person.013372664001.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013372664001.52"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1186/s13661-016-0634-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015692797", 
              "https://doi.org/10.1186/s13661-016-0634-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1687-1847-2014-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044685466", 
              "https://doi.org/10.1186/1687-1847-2014-1"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-05-02", 
        "datePublishedReg": "2022-05-02", 
        "description": "In this article, we present a fractional Kersten\u2013Krasil\u2019shchik coupled KdV-mKdV nonlinear model associated with newly introduced Atangana\u2013Baleanu derivative of fractional order which uses Mittag-Leffler function as a nonsingular and nonlocal kernel. We investigate the nonlinear behavior of multi-component plasma. For this effective approach, named homotopy perturbation, transformation approach is suggested. This scheme of nonlinear model generally occurs as a characterization of waves in traffic flow, multi-component plasmas, electrodynamics, electromagnetism, shallow water waves, elastic media, etc. The main objective of this study is to provide a new class of methods, which requires not using small variables for finding estimated solution of fractional coupled frameworks and unrealistic factors and eliminate linearization. Analytical simulation represents that the suggested method is effective, accurate, and straightforward to use to a wide range of physical frameworks. This analysis indicates that analytical simulation obtained by the homotopy perturbation transform method is very efficient and precise for evaluation of the nonlinear behavior of the scheme. This result also suggests that the homotopy perturbation transform method is much simpler and easier, more convenient and effective than other available mathematical techniques.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s13662-022-03709-5", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1421475", 
            "issn": [
              "2731-4235"
            ], 
            "name": "Advances in Continuous and Discrete Models", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2022"
          }
        ], 
        "keywords": [
          "homotopy perturbation transform method", 
          "Atangana\u2013Baleanu derivative", 
          "multi-component plasma", 
          "nonlinear model", 
          "KdV\u2013mKdV system", 
          "available mathematical techniques", 
          "Mittag-Leffler function", 
          "transform method", 
          "shallow water waves", 
          "nonlinear behavior", 
          "homotopy perturbation", 
          "mathematical techniques", 
          "characterization of wave", 
          "fractional order", 
          "nonlocal kernel", 
          "analytical simulation", 
          "elastic medium", 
          "water waves", 
          "small variables", 
          "transformation approach", 
          "traffic flow", 
          "physical framework", 
          "waves", 
          "scheme", 
          "electrodynamics", 
          "linearization", 
          "electromagnetism", 
          "numerical investigation", 
          "simulations", 
          "new class", 
          "perturbations", 
          "model", 
          "kernel", 
          "wide range", 
          "framework", 
          "solution", 
          "class", 
          "approach", 
          "flow", 
          "main objective", 
          "derivatives", 
          "plasma", 
          "variables", 
          "behavior", 
          "effective approach", 
          "function", 
          "system", 
          "order", 
          "technique", 
          "results", 
          "range", 
          "medium", 
          "analysis", 
          "objective", 
          "characterization", 
          "investigation", 
          "article", 
          "evaluation", 
          "study", 
          "factors", 
          "unrealistic factors", 
          "method"
        ], 
        "name": "Numerical investigation of fractional-order Kersten\u2013Krasil\u2019shchik coupled KdV\u2013mKdV system with Atangana\u2013Baleanu derivative", 
        "pagination": "37", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1147550690"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s13662-022-03709-5"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s13662-022-03709-5", 
          "https://app.dimensions.ai/details/publication/pub.1147550690"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-08-04T17:12", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_931.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s13662-022-03709-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13662-022-03709-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13662-022-03709-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13662-022-03709-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13662-022-03709-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    153 TRIPLES      21 PREDICATES      87 URIs      77 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s13662-022-03709-5 schema:about anzsrc-for:01
    2 anzsrc-for:0103
    3 schema:author N66c88ddcf62c4de39d2dd8675e023fdb
    4 schema:citation sg:pub.10.1186/1687-1847-2014-1
    5 sg:pub.10.1186/s13661-016-0634-3
    6 schema:datePublished 2022-05-02
    7 schema:datePublishedReg 2022-05-02
    8 schema:description In this article, we present a fractional Kersten–Krasil’shchik coupled KdV-mKdV nonlinear model associated with newly introduced Atangana–Baleanu derivative of fractional order which uses Mittag-Leffler function as a nonsingular and nonlocal kernel. We investigate the nonlinear behavior of multi-component plasma. For this effective approach, named homotopy perturbation, transformation approach is suggested. This scheme of nonlinear model generally occurs as a characterization of waves in traffic flow, multi-component plasmas, electrodynamics, electromagnetism, shallow water waves, elastic media, etc. The main objective of this study is to provide a new class of methods, which requires not using small variables for finding estimated solution of fractional coupled frameworks and unrealistic factors and eliminate linearization. Analytical simulation represents that the suggested method is effective, accurate, and straightforward to use to a wide range of physical frameworks. This analysis indicates that analytical simulation obtained by the homotopy perturbation transform method is very efficient and precise for evaluation of the nonlinear behavior of the scheme. This result also suggests that the homotopy perturbation transform method is much simpler and easier, more convenient and effective than other available mathematical techniques.
    9 schema:genre article
    10 schema:isAccessibleForFree true
    11 schema:isPartOf N54c6da924718497d82860b40a8a199b7
    12 Ncf5fddd6edeb47d48dbcb06b01028909
    13 sg:journal.1421475
    14 schema:keywords Atangana–Baleanu derivative
    15 KdV–mKdV system
    16 Mittag-Leffler function
    17 analysis
    18 analytical simulation
    19 approach
    20 article
    21 available mathematical techniques
    22 behavior
    23 characterization
    24 characterization of wave
    25 class
    26 derivatives
    27 effective approach
    28 elastic medium
    29 electrodynamics
    30 electromagnetism
    31 evaluation
    32 factors
    33 flow
    34 fractional order
    35 framework
    36 function
    37 homotopy perturbation
    38 homotopy perturbation transform method
    39 investigation
    40 kernel
    41 linearization
    42 main objective
    43 mathematical techniques
    44 medium
    45 method
    46 model
    47 multi-component plasma
    48 new class
    49 nonlinear behavior
    50 nonlinear model
    51 nonlocal kernel
    52 numerical investigation
    53 objective
    54 order
    55 perturbations
    56 physical framework
    57 plasma
    58 range
    59 results
    60 scheme
    61 shallow water waves
    62 simulations
    63 small variables
    64 solution
    65 study
    66 system
    67 technique
    68 traffic flow
    69 transform method
    70 transformation approach
    71 unrealistic factors
    72 variables
    73 water waves
    74 waves
    75 wide range
    76 schema:name Numerical investigation of fractional-order Kersten–Krasil’shchik coupled KdV–mKdV system with Atangana–Baleanu derivative
    77 schema:pagination 37
    78 schema:productId N5f4dc9da0356489283d7ff86c9e2787c
    79 N7e8dc41859124fc190b081ed0c77a0ee
    80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1147550690
    81 https://doi.org/10.1186/s13662-022-03709-5
    82 schema:sdDatePublished 2022-08-04T17:12
    83 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    84 schema:sdPublisher Nd9ac8a42f5ed4c7199fa565dc3bb5afc
    85 schema:url https://doi.org/10.1186/s13662-022-03709-5
    86 sgo:license sg:explorer/license/
    87 sgo:sdDataset articles
    88 rdf:type schema:ScholarlyArticle
    89 N54c6da924718497d82860b40a8a199b7 schema:volumeNumber 2022
    90 rdf:type schema:PublicationVolume
    91 N5f4dc9da0356489283d7ff86c9e2787c schema:name dimensions_id
    92 schema:value pub.1147550690
    93 rdf:type schema:PropertyValue
    94 N63ae014ebb614e6ea10cc9874dcf1888 rdf:first sg:person.016150005527.64
    95 rdf:rest Nb12e9711b6c7400aa5426976f029d6a9
    96 N66c88ddcf62c4de39d2dd8675e023fdb rdf:first sg:person.014405045141.63
    97 rdf:rest Naffa2c3337894294b4ed5fe70eac1618
    98 N7e8dc41859124fc190b081ed0c77a0ee schema:name doi
    99 schema:value 10.1186/s13662-022-03709-5
    100 rdf:type schema:PropertyValue
    101 Naffa2c3337894294b4ed5fe70eac1618 rdf:first sg:person.010375440023.50
    102 rdf:rest N63ae014ebb614e6ea10cc9874dcf1888
    103 Nb12e9711b6c7400aa5426976f029d6a9 rdf:first sg:person.013372664001.52
    104 rdf:rest rdf:nil
    105 Ncf5fddd6edeb47d48dbcb06b01028909 schema:issueNumber 1
    106 rdf:type schema:PublicationIssue
    107 Nd9ac8a42f5ed4c7199fa565dc3bb5afc schema:name Springer Nature - SN SciGraph project
    108 rdf:type schema:Organization
    109 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    110 schema:name Mathematical Sciences
    111 rdf:type schema:DefinedTerm
    112 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
    113 schema:name Numerical and Computational Mathematics
    114 rdf:type schema:DefinedTerm
    115 sg:journal.1421475 schema:issn 2731-4235
    116 schema:name Advances in Continuous and Discrete Models
    117 rdf:type schema:Periodical
    118 sg:person.010375440023.50 schema:affiliation grid-institutes:grid.9786.0
    119 schema:familyName Botmart
    120 schema:givenName Thongchai
    121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010375440023.50
    122 rdf:type schema:Person
    123 sg:person.013372664001.52 schema:affiliation grid-institutes:grid.56302.32
    124 schema:familyName Ali
    125 schema:givenName Akbar
    126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013372664001.52
    127 rdf:type schema:Person
    128 sg:person.014405045141.63 schema:affiliation grid-institutes:grid.56302.32
    129 schema:familyName Iqbal
    130 schema:givenName Naveed
    131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014405045141.63
    132 rdf:type schema:Person
    133 sg:person.016150005527.64 schema:affiliation grid-institutes:grid.10251.37
    134 schema:familyName Mohammed
    135 schema:givenName Wael W.
    136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016150005527.64
    137 rdf:type schema:Person
    138 sg:pub.10.1186/1687-1847-2014-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044685466
    139 https://doi.org/10.1186/1687-1847-2014-1
    140 rdf:type schema:CreativeWork
    141 sg:pub.10.1186/s13661-016-0634-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015692797
    142 https://doi.org/10.1186/s13661-016-0634-3
    143 rdf:type schema:CreativeWork
    144 grid-institutes:grid.10251.37 schema:alternateName Faculty of Science, Mansoura University, 35516, Mansoura, Egypt
    145 schema:name Department of Mathematics, College of Science, University of Ha’il, 2440, Ha’il, Saudi Arabia
    146 Faculty of Science, Mansoura University, 35516, Mansoura, Egypt
    147 rdf:type schema:Organization
    148 grid-institutes:grid.56302.32 schema:alternateName Department of Mathematics, College of Science, University of Ha’il, 2440, Ha’il, Saudi Arabia
    149 schema:name Department of Mathematics, College of Science, University of Ha’il, 2440, Ha’il, Saudi Arabia
    150 rdf:type schema:Organization
    151 grid-institutes:grid.9786.0 schema:alternateName Department of Mathematics, Faculty of Science, Khon Kaen University, 40002, Khon Kaen, Thailand
    152 schema:name Department of Mathematics, Faculty of Science, Khon Kaen University, 40002, Khon Kaen, Thailand
    153 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...