Complete controllability of nonlinear fractional neutral functional differential equations View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-04-18

AUTHORS

Yanhua Wen, Xuan-Xuan Xi

ABSTRACT

This paper is concerned with the complete controllability of a nonlinear fractional neutral functional differential equation. Some sufficient conditions are established for the complete controllability of the nonlinear fractional system. The conditions are established based on the fractional power of operators and the fixed-point theorem under the assumption that the associated linear system is completely controllable. Finally, an example is presented to illustrate our main result. More... »

PAGES

33

References to SciGraph publications

  • 2008-07-24. Constrained controllability of semilinear systems with delays in NONLINEAR DYNAMICS
  • 2009-03-12. Controllability of Semilinear Differential Systems with Nonlocal Initial Conditions in Banach Spaces in JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
  • 2011-08-20. Approximate Controllability of Fractional Order Semilinear Delay Systems in JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
  • 1995. An Introduction to Infinite-Dimensional Linear Systems Theory in NONE
  • 1991-03. Controllability questions for nonlinear systems in abstract spaces in JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s13662-022-03706-8

    DOI

    http://dx.doi.org/10.1186/s13662-022-03706-8

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1147193502


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "School of Mathematical and Physics, Anhui Jianzhu University, Heifei, China", 
              "id": "http://www.grid.ac/institutes/grid.440647.5", 
              "name": [
                "School of Mathematical and Physics, Anhui Jianzhu University, Heifei, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wen", 
            "givenName": "Yanhua", 
            "id": "sg:person.014774663314.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014774663314.31"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Faculty of Mathematics and Computational Science, Xiangtan University, Hunan, China", 
              "id": "http://www.grid.ac/institutes/grid.412982.4", 
              "name": [
                "Faculty of Mathematics and Computational Science, Xiangtan University, Hunan, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xi", 
            "givenName": "Xuan-Xuan", 
            "id": "sg:person.011013564242.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011013564242.24"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-1-4612-4224-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019622211", 
              "https://doi.org/10.1007/978-1-4612-4224-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00940064", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051109151", 
              "https://doi.org/10.1007/bf00940064"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10957-009-9535-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030433318", 
              "https://doi.org/10.1007/s10957-009-9535-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10957-011-9905-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051717862", 
              "https://doi.org/10.1007/s10957-011-9905-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11071-008-9389-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036080933", 
              "https://doi.org/10.1007/s11071-008-9389-4"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-04-18", 
        "datePublishedReg": "2022-04-18", 
        "description": "This paper is concerned with the complete controllability of a nonlinear fractional neutral functional differential equation. Some sufficient conditions are established for the complete controllability of the nonlinear fractional system. The conditions are established based on the fractional power of operators and the fixed-point theorem under the assumption that the associated linear system is completely controllable. Finally, an example is presented to illustrate our main result.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s13662-022-03706-8", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.8120016", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.8125427", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1421475", 
            "issn": [
              "2731-4235"
            ], 
            "name": "Advances in Continuous and Discrete Models", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2022"
          }
        ], 
        "keywords": [
          "fractional neutral functional differential equations", 
          "neutral functional differential equations", 
          "functional differential equations", 
          "complete controllability", 
          "differential equations", 
          "nonlinear fractional systems", 
          "associated linear system", 
          "fixed-point theorem", 
          "linear systems", 
          "fractional systems", 
          "sufficient conditions", 
          "fractional powers", 
          "equations", 
          "controllability", 
          "main results", 
          "theorem", 
          "operators", 
          "assumption", 
          "system", 
          "conditions", 
          "power", 
          "results", 
          "example", 
          "paper"
        ], 
        "name": "Complete controllability of nonlinear fractional neutral functional differential equations", 
        "pagination": "33", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1147193502"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s13662-022-03706-8"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s13662-022-03706-8", 
          "https://app.dimensions.ai/details/publication/pub.1147193502"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-08-04T17:10", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_929.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s13662-022-03706-8"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13662-022-03706-8'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13662-022-03706-8'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13662-022-03706-8'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13662-022-03706-8'


     

    This table displays all metadata directly associated to this object as RDF triples.

    114 TRIPLES      21 PREDICATES      53 URIs      40 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s13662-022-03706-8 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Nd2b041e195724953a0babd25a160f2df
    4 schema:citation sg:pub.10.1007/978-1-4612-4224-6
    5 sg:pub.10.1007/bf00940064
    6 sg:pub.10.1007/s10957-009-9535-2
    7 sg:pub.10.1007/s10957-011-9905-4
    8 sg:pub.10.1007/s11071-008-9389-4
    9 schema:datePublished 2022-04-18
    10 schema:datePublishedReg 2022-04-18
    11 schema:description This paper is concerned with the complete controllability of a nonlinear fractional neutral functional differential equation. Some sufficient conditions are established for the complete controllability of the nonlinear fractional system. The conditions are established based on the fractional power of operators and the fixed-point theorem under the assumption that the associated linear system is completely controllable. Finally, an example is presented to illustrate our main result.
    12 schema:genre article
    13 schema:isAccessibleForFree true
    14 schema:isPartOf N08910e50ca0e433782468476c98059c8
    15 N8703559f37cb4f4ca2112b7baa5cda20
    16 sg:journal.1421475
    17 schema:keywords associated linear system
    18 assumption
    19 complete controllability
    20 conditions
    21 controllability
    22 differential equations
    23 equations
    24 example
    25 fixed-point theorem
    26 fractional neutral functional differential equations
    27 fractional powers
    28 fractional systems
    29 functional differential equations
    30 linear systems
    31 main results
    32 neutral functional differential equations
    33 nonlinear fractional systems
    34 operators
    35 paper
    36 power
    37 results
    38 sufficient conditions
    39 system
    40 theorem
    41 schema:name Complete controllability of nonlinear fractional neutral functional differential equations
    42 schema:pagination 33
    43 schema:productId Nea4ddc9d4d5e4c8bac1745f304ca1c57
    44 Nfbb60a71b7c8485c9bad1aaf22dd1cb2
    45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1147193502
    46 https://doi.org/10.1186/s13662-022-03706-8
    47 schema:sdDatePublished 2022-08-04T17:10
    48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    49 schema:sdPublisher N80ccdac4751b49f2bb4057d76b8d0ff9
    50 schema:url https://doi.org/10.1186/s13662-022-03706-8
    51 sgo:license sg:explorer/license/
    52 sgo:sdDataset articles
    53 rdf:type schema:ScholarlyArticle
    54 N08910e50ca0e433782468476c98059c8 schema:volumeNumber 2022
    55 rdf:type schema:PublicationVolume
    56 N64d7a832a9704f3aba850585a6137830 rdf:first sg:person.011013564242.24
    57 rdf:rest rdf:nil
    58 N80ccdac4751b49f2bb4057d76b8d0ff9 schema:name Springer Nature - SN SciGraph project
    59 rdf:type schema:Organization
    60 N8703559f37cb4f4ca2112b7baa5cda20 schema:issueNumber 1
    61 rdf:type schema:PublicationIssue
    62 Nd2b041e195724953a0babd25a160f2df rdf:first sg:person.014774663314.31
    63 rdf:rest N64d7a832a9704f3aba850585a6137830
    64 Nea4ddc9d4d5e4c8bac1745f304ca1c57 schema:name doi
    65 schema:value 10.1186/s13662-022-03706-8
    66 rdf:type schema:PropertyValue
    67 Nfbb60a71b7c8485c9bad1aaf22dd1cb2 schema:name dimensions_id
    68 schema:value pub.1147193502
    69 rdf:type schema:PropertyValue
    70 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    71 schema:name Mathematical Sciences
    72 rdf:type schema:DefinedTerm
    73 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    74 schema:name Pure Mathematics
    75 rdf:type schema:DefinedTerm
    76 sg:grant.8120016 http://pending.schema.org/fundedItem sg:pub.10.1186/s13662-022-03706-8
    77 rdf:type schema:MonetaryGrant
    78 sg:grant.8125427 http://pending.schema.org/fundedItem sg:pub.10.1186/s13662-022-03706-8
    79 rdf:type schema:MonetaryGrant
    80 sg:journal.1421475 schema:issn 2731-4235
    81 schema:name Advances in Continuous and Discrete Models
    82 schema:publisher Springer Nature
    83 rdf:type schema:Periodical
    84 sg:person.011013564242.24 schema:affiliation grid-institutes:grid.412982.4
    85 schema:familyName Xi
    86 schema:givenName Xuan-Xuan
    87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011013564242.24
    88 rdf:type schema:Person
    89 sg:person.014774663314.31 schema:affiliation grid-institutes:grid.440647.5
    90 schema:familyName Wen
    91 schema:givenName Yanhua
    92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014774663314.31
    93 rdf:type schema:Person
    94 sg:pub.10.1007/978-1-4612-4224-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019622211
    95 https://doi.org/10.1007/978-1-4612-4224-6
    96 rdf:type schema:CreativeWork
    97 sg:pub.10.1007/bf00940064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051109151
    98 https://doi.org/10.1007/bf00940064
    99 rdf:type schema:CreativeWork
    100 sg:pub.10.1007/s10957-009-9535-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030433318
    101 https://doi.org/10.1007/s10957-009-9535-2
    102 rdf:type schema:CreativeWork
    103 sg:pub.10.1007/s10957-011-9905-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051717862
    104 https://doi.org/10.1007/s10957-011-9905-4
    105 rdf:type schema:CreativeWork
    106 sg:pub.10.1007/s11071-008-9389-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036080933
    107 https://doi.org/10.1007/s11071-008-9389-4
    108 rdf:type schema:CreativeWork
    109 grid-institutes:grid.412982.4 schema:alternateName Faculty of Mathematics and Computational Science, Xiangtan University, Hunan, China
    110 schema:name Faculty of Mathematics and Computational Science, Xiangtan University, Hunan, China
    111 rdf:type schema:Organization
    112 grid-institutes:grid.440647.5 schema:alternateName School of Mathematical and Physics, Anhui Jianzhu University, Heifei, China
    113 schema:name School of Mathematical and Physics, Anhui Jianzhu University, Heifei, China
    114 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...