Applications of some new Krasnoselskii-type fixed-point results for generalized expansive and equiexpansive mappings View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-04-12

AUTHORS

Niaz Ahmad, Nayyar Mehmood, Ali Akgül

ABSTRACT

We consider Ω as a subset of a Banach space W and Λ as a function of Ω into W. Let Ϝ be a function whose image values lie in W and domain is Λ(Ω)×Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Lambda (\Omega )\times \Omega $\end{document} or Ω×Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Omega \times \Omega $\end{document}. In this paper, we establish some fixed-point results for a generalized expansive and equiexpansive operator Ϝ such that Ω⊆Ϝ(Λω,Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Omega \subseteq \digamma (\Lambda \omega ,\Omega )$\end{document} or Ω⊆Ϝ(ω,Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Omega \subseteq \digamma (\omega ,\Omega )$\end{document}. We apply our results to acquire the solutions of fractional evolution equations and certain types of integral equations. We demonstrate our results with examples, and plot approximate and exact solutions with errors. More... »

PAGES

30

References to SciGraph publications

  • 2020-06-05. Krasnoselskii-type fixed point theorems using α-concave operators in JOURNAL OF FIXED POINT THEORY AND APPLICATIONS
  • 1997. Measures of Noncompactness in Metric Fixed Point Theory in NONE
  • 2019-01-23. Sequential evolution conformable differential equations of second order with nonlocal condition in ADVANCES IN CONTINUOUS AND DISCRETE MODELS
  • 2020-06-08. Family of mappings with an equicontractive-type condition in JOURNAL OF FIXED POINT THEORY AND APPLICATIONS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s13662-022-03704-w

    DOI

    http://dx.doi.org/10.1186/s13662-022-03704-w

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1147055076


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Mathematics and Statistics, International Islamic University, H-10, Islamabad, Pakistan", 
              "id": "http://www.grid.ac/institutes/grid.411727.6", 
              "name": [
                "Department of Mathematics and Statistics, International Islamic University, H-10, Islamabad, Pakistan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ahmad", 
            "givenName": "Niaz", 
            "id": "sg:person.012071045013.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012071045013.23"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mathematics and Statistics, International Islamic University, H-10, Islamabad, Pakistan", 
              "id": "http://www.grid.ac/institutes/grid.411727.6", 
              "name": [
                "Department of Mathematics and Statistics, International Islamic University, H-10, Islamabad, Pakistan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mehmood", 
            "givenName": "Nayyar", 
            "id": "sg:person.010220136731.14", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010220136731.14"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mathematics, Art and Science Faculty, Siirt University, 56100, Siirt, Turkey", 
              "id": "http://www.grid.ac/institutes/grid.449212.8", 
              "name": [
                "Department of Mathematics, Art and Science Faculty, Siirt University, 56100, Siirt, Turkey"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Akg\u00fcl", 
            "givenName": "Ali", 
            "id": "sg:person.010755004057.56", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010755004057.56"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-0348-8920-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004930089", 
              "https://doi.org/10.1007/978-3-0348-8920-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13662-019-1954-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1111626394", 
              "https://doi.org/10.1186/s13662-019-1954-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11784-020-00792-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1128225470", 
              "https://doi.org/10.1007/s11784-020-00792-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11784-020-00789-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1128305999", 
              "https://doi.org/10.1007/s11784-020-00789-2"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-04-12", 
        "datePublishedReg": "2022-04-12", 
        "description": "We consider \u03a9 as a subset of a Banach space W and \u039b as a function of \u03a9 into W. Let \u03dc be a function whose image values lie in W and domain is \u039b(\u03a9)\u00d7\u03a9\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\Lambda (\\Omega )\\times \\Omega $\\end{document} or \u03a9\u00d7\u03a9\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\Omega \\times \\Omega $\\end{document}. In this paper, we establish some fixed-point results for a generalized expansive and equiexpansive operator \u03dc such that \u03a9\u2286\u03dc(\u039b\u03c9,\u03a9)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\Omega \\subseteq \\digamma (\\Lambda \\omega ,\\Omega )$\\end{document} or \u03a9\u2286\u03dc(\u03c9,\u03a9)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\Omega \\subseteq \\digamma (\\omega ,\\Omega )$\\end{document}. We apply our results to acquire the solutions of fractional evolution equations and certain types of integral equations. We demonstrate our results with examples, and plot approximate and exact solutions with errors.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s13662-022-03704-w", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1421475", 
            "issn": [
              "2731-4235"
            ], 
            "name": "Advances in Continuous and Discrete Models", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2022"
          }
        ], 
        "keywords": [
          "fixed-point results", 
          "fractional evolution equations", 
          "Banach space W", 
          "evolution equations", 
          "exact solution", 
          "integral equations", 
          "space W", 
          "equations", 
          "solution", 
          "certain types", 
          "function", 
          "error", 
          "image values", 
          "results", 
          "applications", 
          "mapping", 
          "subset", 
          "domain", 
          "values", 
          "types", 
          "plots", 
          "example", 
          "paper"
        ], 
        "name": "Applications of some new Krasnoselskii-type fixed-point results for generalized expansive and equiexpansive mappings", 
        "pagination": "30", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1147055076"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s13662-022-03704-w"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s13662-022-03704-w", 
          "https://app.dimensions.ai/details/publication/pub.1147055076"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-08-04T17:10", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_929.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s13662-022-03704-w"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13662-022-03704-w'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13662-022-03704-w'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13662-022-03704-w'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13662-022-03704-w'


     

    This table displays all metadata directly associated to this object as RDF triples.

    112 TRIPLES      21 PREDICATES      51 URIs      39 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s13662-022-03704-w schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N963432c0a4d24ae9904e71cad890f799
    4 schema:citation sg:pub.10.1007/978-3-0348-8920-9
    5 sg:pub.10.1007/s11784-020-00789-2
    6 sg:pub.10.1007/s11784-020-00792-7
    7 sg:pub.10.1186/s13662-019-1954-2
    8 schema:datePublished 2022-04-12
    9 schema:datePublishedReg 2022-04-12
    10 schema:description We consider Ω as a subset of a Banach space W and Λ as a function of Ω into W. Let Ϝ be a function whose image values lie in W and domain is Λ(Ω)×Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Lambda (\Omega )\times \Omega $\end{document} or Ω×Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Omega \times \Omega $\end{document}. In this paper, we establish some fixed-point results for a generalized expansive and equiexpansive operator Ϝ such that Ω⊆Ϝ(Λω,Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Omega \subseteq \digamma (\Lambda \omega ,\Omega )$\end{document} or Ω⊆Ϝ(ω,Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Omega \subseteq \digamma (\omega ,\Omega )$\end{document}. We apply our results to acquire the solutions of fractional evolution equations and certain types of integral equations. We demonstrate our results with examples, and plot approximate and exact solutions with errors.
    11 schema:genre article
    12 schema:isAccessibleForFree true
    13 schema:isPartOf N80aac0942993434983e491fb75fe1853
    14 Nc2eb327363f442bcb9a70d66f706fa13
    15 sg:journal.1421475
    16 schema:keywords Banach space W
    17 applications
    18 certain types
    19 domain
    20 equations
    21 error
    22 evolution equations
    23 exact solution
    24 example
    25 fixed-point results
    26 fractional evolution equations
    27 function
    28 image values
    29 integral equations
    30 mapping
    31 paper
    32 plots
    33 results
    34 solution
    35 space W
    36 subset
    37 types
    38 values
    39 schema:name Applications of some new Krasnoselskii-type fixed-point results for generalized expansive and equiexpansive mappings
    40 schema:pagination 30
    41 schema:productId N5eedee17d2394e91acf603291b5397a2
    42 Nca913129974f48309de68a90d1877266
    43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1147055076
    44 https://doi.org/10.1186/s13662-022-03704-w
    45 schema:sdDatePublished 2022-08-04T17:10
    46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    47 schema:sdPublisher N693911751fb540528491d9098c6e190a
    48 schema:url https://doi.org/10.1186/s13662-022-03704-w
    49 sgo:license sg:explorer/license/
    50 sgo:sdDataset articles
    51 rdf:type schema:ScholarlyArticle
    52 N07539810824d4cb09ecc289afedb08f9 rdf:first sg:person.010220136731.14
    53 rdf:rest N96cabf577f5645ccbfec1ee254a7190c
    54 N5eedee17d2394e91acf603291b5397a2 schema:name dimensions_id
    55 schema:value pub.1147055076
    56 rdf:type schema:PropertyValue
    57 N693911751fb540528491d9098c6e190a schema:name Springer Nature - SN SciGraph project
    58 rdf:type schema:Organization
    59 N80aac0942993434983e491fb75fe1853 schema:issueNumber 1
    60 rdf:type schema:PublicationIssue
    61 N963432c0a4d24ae9904e71cad890f799 rdf:first sg:person.012071045013.23
    62 rdf:rest N07539810824d4cb09ecc289afedb08f9
    63 N96cabf577f5645ccbfec1ee254a7190c rdf:first sg:person.010755004057.56
    64 rdf:rest rdf:nil
    65 Nc2eb327363f442bcb9a70d66f706fa13 schema:volumeNumber 2022
    66 rdf:type schema:PublicationVolume
    67 Nca913129974f48309de68a90d1877266 schema:name doi
    68 schema:value 10.1186/s13662-022-03704-w
    69 rdf:type schema:PropertyValue
    70 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    71 schema:name Mathematical Sciences
    72 rdf:type schema:DefinedTerm
    73 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    74 schema:name Pure Mathematics
    75 rdf:type schema:DefinedTerm
    76 sg:journal.1421475 schema:issn 2731-4235
    77 schema:name Advances in Continuous and Discrete Models
    78 schema:publisher Springer Nature
    79 rdf:type schema:Periodical
    80 sg:person.010220136731.14 schema:affiliation grid-institutes:grid.411727.6
    81 schema:familyName Mehmood
    82 schema:givenName Nayyar
    83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010220136731.14
    84 rdf:type schema:Person
    85 sg:person.010755004057.56 schema:affiliation grid-institutes:grid.449212.8
    86 schema:familyName Akgül
    87 schema:givenName Ali
    88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010755004057.56
    89 rdf:type schema:Person
    90 sg:person.012071045013.23 schema:affiliation grid-institutes:grid.411727.6
    91 schema:familyName Ahmad
    92 schema:givenName Niaz
    93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012071045013.23
    94 rdf:type schema:Person
    95 sg:pub.10.1007/978-3-0348-8920-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004930089
    96 https://doi.org/10.1007/978-3-0348-8920-9
    97 rdf:type schema:CreativeWork
    98 sg:pub.10.1007/s11784-020-00789-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1128305999
    99 https://doi.org/10.1007/s11784-020-00789-2
    100 rdf:type schema:CreativeWork
    101 sg:pub.10.1007/s11784-020-00792-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1128225470
    102 https://doi.org/10.1007/s11784-020-00792-7
    103 rdf:type schema:CreativeWork
    104 sg:pub.10.1186/s13662-019-1954-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111626394
    105 https://doi.org/10.1186/s13662-019-1954-2
    106 rdf:type schema:CreativeWork
    107 grid-institutes:grid.411727.6 schema:alternateName Department of Mathematics and Statistics, International Islamic University, H-10, Islamabad, Pakistan
    108 schema:name Department of Mathematics and Statistics, International Islamic University, H-10, Islamabad, Pakistan
    109 rdf:type schema:Organization
    110 grid-institutes:grid.449212.8 schema:alternateName Department of Mathematics, Art and Science Faculty, Siirt University, 56100, Siirt, Turkey
    111 schema:name Department of Mathematics, Art and Science Faculty, Siirt University, 56100, Siirt, Turkey
    112 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...