Ontology type: schema:ScholarlyArticle Open Access: True
2022-04-12
AUTHORSNiaz Ahmad, Nayyar Mehmood, Ali Akgül
ABSTRACTWe consider Ω as a subset of a Banach space W and Λ as a function of Ω into W. Let Ϝ be a function whose image values lie in W and domain is Λ(Ω)×Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Lambda (\Omega )\times \Omega $\end{document} or Ω×Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Omega \times \Omega $\end{document}. In this paper, we establish some fixed-point results for a generalized expansive and equiexpansive operator Ϝ such that Ω⊆Ϝ(Λω,Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Omega \subseteq \digamma (\Lambda \omega ,\Omega )$\end{document} or Ω⊆Ϝ(ω,Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Omega \subseteq \digamma (\omega ,\Omega )$\end{document}. We apply our results to acquire the solutions of fractional evolution equations and certain types of integral equations. We demonstrate our results with examples, and plot approximate and exact solutions with errors. More... »
PAGES30
http://scigraph.springernature.com/pub.10.1186/s13662-022-03704-w
DOIhttp://dx.doi.org/10.1186/s13662-022-03704-w
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1147055076
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Mathematics and Statistics, International Islamic University, H-10, Islamabad, Pakistan",
"id": "http://www.grid.ac/institutes/grid.411727.6",
"name": [
"Department of Mathematics and Statistics, International Islamic University, H-10, Islamabad, Pakistan"
],
"type": "Organization"
},
"familyName": "Ahmad",
"givenName": "Niaz",
"id": "sg:person.012071045013.23",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012071045013.23"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Mathematics and Statistics, International Islamic University, H-10, Islamabad, Pakistan",
"id": "http://www.grid.ac/institutes/grid.411727.6",
"name": [
"Department of Mathematics and Statistics, International Islamic University, H-10, Islamabad, Pakistan"
],
"type": "Organization"
},
"familyName": "Mehmood",
"givenName": "Nayyar",
"id": "sg:person.010220136731.14",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010220136731.14"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Mathematics, Art and Science Faculty, Siirt University, 56100, Siirt, Turkey",
"id": "http://www.grid.ac/institutes/grid.449212.8",
"name": [
"Department of Mathematics, Art and Science Faculty, Siirt University, 56100, Siirt, Turkey"
],
"type": "Organization"
},
"familyName": "Akg\u00fcl",
"givenName": "Ali",
"id": "sg:person.010755004057.56",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010755004057.56"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/978-3-0348-8920-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1004930089",
"https://doi.org/10.1007/978-3-0348-8920-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/s13662-019-1954-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1111626394",
"https://doi.org/10.1186/s13662-019-1954-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11784-020-00792-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1128225470",
"https://doi.org/10.1007/s11784-020-00792-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11784-020-00789-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1128305999",
"https://doi.org/10.1007/s11784-020-00789-2"
],
"type": "CreativeWork"
}
],
"datePublished": "2022-04-12",
"datePublishedReg": "2022-04-12",
"description": "We consider \u03a9 as a subset of a Banach space W and \u039b as a function of \u03a9 into W. Let \u03dc be a function whose image values lie in W and domain is \u039b(\u03a9)\u00d7\u03a9\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\Lambda (\\Omega )\\times \\Omega $\\end{document} or \u03a9\u00d7\u03a9\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\Omega \\times \\Omega $\\end{document}. In this paper, we establish some fixed-point results for a generalized expansive and equiexpansive operator \u03dc such that \u03a9\u2286\u03dc(\u039b\u03c9,\u03a9)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\Omega \\subseteq \\digamma (\\Lambda \\omega ,\\Omega )$\\end{document} or \u03a9\u2286\u03dc(\u03c9,\u03a9)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\Omega \\subseteq \\digamma (\\omega ,\\Omega )$\\end{document}. We apply our results to acquire the solutions of fractional evolution equations and certain types of integral equations. We demonstrate our results with examples, and plot approximate and exact solutions with errors.",
"genre": "article",
"id": "sg:pub.10.1186/s13662-022-03704-w",
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1421475",
"issn": [
"2731-4235"
],
"name": "Advances in Continuous and Discrete Models",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "2022"
}
],
"keywords": [
"fixed-point results",
"fractional evolution equations",
"Banach space W",
"evolution equations",
"exact solution",
"integral equations",
"space W",
"equations",
"solution",
"certain types",
"function",
"error",
"image values",
"results",
"applications",
"mapping",
"subset",
"domain",
"values",
"types",
"plots",
"example",
"paper"
],
"name": "Applications of some new Krasnoselskii-type fixed-point results for generalized expansive and equiexpansive mappings",
"pagination": "30",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1147055076"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1186/s13662-022-03704-w"
]
}
],
"sameAs": [
"https://doi.org/10.1186/s13662-022-03704-w",
"https://app.dimensions.ai/details/publication/pub.1147055076"
],
"sdDataset": "articles",
"sdDatePublished": "2022-08-04T17:10",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_929.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1186/s13662-022-03704-w"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13662-022-03704-w'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13662-022-03704-w'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13662-022-03704-w'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13662-022-03704-w'
This table displays all metadata directly associated to this object as RDF triples.
112 TRIPLES
21 PREDICATES
51 URIs
39 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1186/s13662-022-03704-w | schema:about | anzsrc-for:01 |
2 | ″ | ″ | anzsrc-for:0101 |
3 | ″ | schema:author | N963432c0a4d24ae9904e71cad890f799 |
4 | ″ | schema:citation | sg:pub.10.1007/978-3-0348-8920-9 |
5 | ″ | ″ | sg:pub.10.1007/s11784-020-00789-2 |
6 | ″ | ″ | sg:pub.10.1007/s11784-020-00792-7 |
7 | ″ | ″ | sg:pub.10.1186/s13662-019-1954-2 |
8 | ″ | schema:datePublished | 2022-04-12 |
9 | ″ | schema:datePublishedReg | 2022-04-12 |
10 | ″ | schema:description | We consider Ω as a subset of a Banach space W and Λ as a function of Ω into W. Let Ϝ be a function whose image values lie in W and domain is Λ(Ω)×Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Lambda (\Omega )\times \Omega $\end{document} or Ω×Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Omega \times \Omega $\end{document}. In this paper, we establish some fixed-point results for a generalized expansive and equiexpansive operator Ϝ such that Ω⊆Ϝ(Λω,Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Omega \subseteq \digamma (\Lambda \omega ,\Omega )$\end{document} or Ω⊆Ϝ(ω,Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Omega \subseteq \digamma (\omega ,\Omega )$\end{document}. We apply our results to acquire the solutions of fractional evolution equations and certain types of integral equations. We demonstrate our results with examples, and plot approximate and exact solutions with errors. |
11 | ″ | schema:genre | article |
12 | ″ | schema:isAccessibleForFree | true |
13 | ″ | schema:isPartOf | N80aac0942993434983e491fb75fe1853 |
14 | ″ | ″ | Nc2eb327363f442bcb9a70d66f706fa13 |
15 | ″ | ″ | sg:journal.1421475 |
16 | ″ | schema:keywords | Banach space W |
17 | ″ | ″ | applications |
18 | ″ | ″ | certain types |
19 | ″ | ″ | domain |
20 | ″ | ″ | equations |
21 | ″ | ″ | error |
22 | ″ | ″ | evolution equations |
23 | ″ | ″ | exact solution |
24 | ″ | ″ | example |
25 | ″ | ″ | fixed-point results |
26 | ″ | ″ | fractional evolution equations |
27 | ″ | ″ | function |
28 | ″ | ″ | image values |
29 | ″ | ″ | integral equations |
30 | ″ | ″ | mapping |
31 | ″ | ″ | paper |
32 | ″ | ″ | plots |
33 | ″ | ″ | results |
34 | ″ | ″ | solution |
35 | ″ | ″ | space W |
36 | ″ | ″ | subset |
37 | ″ | ″ | types |
38 | ″ | ″ | values |
39 | ″ | schema:name | Applications of some new Krasnoselskii-type fixed-point results for generalized expansive and equiexpansive mappings |
40 | ″ | schema:pagination | 30 |
41 | ″ | schema:productId | N5eedee17d2394e91acf603291b5397a2 |
42 | ″ | ″ | Nca913129974f48309de68a90d1877266 |
43 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1147055076 |
44 | ″ | ″ | https://doi.org/10.1186/s13662-022-03704-w |
45 | ″ | schema:sdDatePublished | 2022-08-04T17:10 |
46 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
47 | ″ | schema:sdPublisher | N693911751fb540528491d9098c6e190a |
48 | ″ | schema:url | https://doi.org/10.1186/s13662-022-03704-w |
49 | ″ | sgo:license | sg:explorer/license/ |
50 | ″ | sgo:sdDataset | articles |
51 | ″ | rdf:type | schema:ScholarlyArticle |
52 | N07539810824d4cb09ecc289afedb08f9 | rdf:first | sg:person.010220136731.14 |
53 | ″ | rdf:rest | N96cabf577f5645ccbfec1ee254a7190c |
54 | N5eedee17d2394e91acf603291b5397a2 | schema:name | dimensions_id |
55 | ″ | schema:value | pub.1147055076 |
56 | ″ | rdf:type | schema:PropertyValue |
57 | N693911751fb540528491d9098c6e190a | schema:name | Springer Nature - SN SciGraph project |
58 | ″ | rdf:type | schema:Organization |
59 | N80aac0942993434983e491fb75fe1853 | schema:issueNumber | 1 |
60 | ″ | rdf:type | schema:PublicationIssue |
61 | N963432c0a4d24ae9904e71cad890f799 | rdf:first | sg:person.012071045013.23 |
62 | ″ | rdf:rest | N07539810824d4cb09ecc289afedb08f9 |
63 | N96cabf577f5645ccbfec1ee254a7190c | rdf:first | sg:person.010755004057.56 |
64 | ″ | rdf:rest | rdf:nil |
65 | Nc2eb327363f442bcb9a70d66f706fa13 | schema:volumeNumber | 2022 |
66 | ″ | rdf:type | schema:PublicationVolume |
67 | Nca913129974f48309de68a90d1877266 | schema:name | doi |
68 | ″ | schema:value | 10.1186/s13662-022-03704-w |
69 | ″ | rdf:type | schema:PropertyValue |
70 | anzsrc-for:01 | schema:inDefinedTermSet | anzsrc-for: |
71 | ″ | schema:name | Mathematical Sciences |
72 | ″ | rdf:type | schema:DefinedTerm |
73 | anzsrc-for:0101 | schema:inDefinedTermSet | anzsrc-for: |
74 | ″ | schema:name | Pure Mathematics |
75 | ″ | rdf:type | schema:DefinedTerm |
76 | sg:journal.1421475 | schema:issn | 2731-4235 |
77 | ″ | schema:name | Advances in Continuous and Discrete Models |
78 | ″ | schema:publisher | Springer Nature |
79 | ″ | rdf:type | schema:Periodical |
80 | sg:person.010220136731.14 | schema:affiliation | grid-institutes:grid.411727.6 |
81 | ″ | schema:familyName | Mehmood |
82 | ″ | schema:givenName | Nayyar |
83 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010220136731.14 |
84 | ″ | rdf:type | schema:Person |
85 | sg:person.010755004057.56 | schema:affiliation | grid-institutes:grid.449212.8 |
86 | ″ | schema:familyName | Akgül |
87 | ″ | schema:givenName | Ali |
88 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010755004057.56 |
89 | ″ | rdf:type | schema:Person |
90 | sg:person.012071045013.23 | schema:affiliation | grid-institutes:grid.411727.6 |
91 | ″ | schema:familyName | Ahmad |
92 | ″ | schema:givenName | Niaz |
93 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012071045013.23 |
94 | ″ | rdf:type | schema:Person |
95 | sg:pub.10.1007/978-3-0348-8920-9 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1004930089 |
96 | ″ | ″ | https://doi.org/10.1007/978-3-0348-8920-9 |
97 | ″ | rdf:type | schema:CreativeWork |
98 | sg:pub.10.1007/s11784-020-00789-2 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1128305999 |
99 | ″ | ″ | https://doi.org/10.1007/s11784-020-00789-2 |
100 | ″ | rdf:type | schema:CreativeWork |
101 | sg:pub.10.1007/s11784-020-00792-7 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1128225470 |
102 | ″ | ″ | https://doi.org/10.1007/s11784-020-00792-7 |
103 | ″ | rdf:type | schema:CreativeWork |
104 | sg:pub.10.1186/s13662-019-1954-2 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1111626394 |
105 | ″ | ″ | https://doi.org/10.1186/s13662-019-1954-2 |
106 | ″ | rdf:type | schema:CreativeWork |
107 | grid-institutes:grid.411727.6 | schema:alternateName | Department of Mathematics and Statistics, International Islamic University, H-10, Islamabad, Pakistan |
108 | ″ | schema:name | Department of Mathematics and Statistics, International Islamic University, H-10, Islamabad, Pakistan |
109 | ″ | rdf:type | schema:Organization |
110 | grid-institutes:grid.449212.8 | schema:alternateName | Department of Mathematics, Art and Science Faculty, Siirt University, 56100, Siirt, Turkey |
111 | ″ | schema:name | Department of Mathematics, Art and Science Faculty, Siirt University, 56100, Siirt, Turkey |
112 | ″ | rdf:type | schema:Organization |