On the behaviour of solutions to a kind of third order neutral stochastic differential equation with delay View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-04-07

AUTHORS

Ayman M. Mahmoud, Adeleke T. Ademola

ABSTRACT

This article demonstrates the behaviour of solutions to a kind of nonlinear third order neutral stochastic differential equations. Setting x′(t)=y(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x^{\prime }(t)=y(t)$\end{document}, y′(t)=z(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$y^{\prime }(t) =z(t)$\end{document} the third order differential equation is ablated to a system of first order differential equations together with its equivalent quadratic function to derive a suitable downright Lyapunov functional. This functional is utilised to obtain criteria which guarantee stochastic stability of the trivial solution and stochastic boundedness of the nontrivial solutions of the discussed equations. Furthermore, special cases are provided to verify the effectiveness and reliability of our hypotheses. The results of this paper complement the existing decisions on system of nonlinear neutral stochastic differential equations with delay and extend many results on third order neutral and stochastic differential equations with and without delay in the literature. More... »

PAGES

28

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13662-022-03703-x

DOI

http://dx.doi.org/10.1186/s13662-022-03703-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1146947930


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Faculty of Science, New Valley University, 72511, El-Khargah, Egypt", 
          "id": "http://www.grid.ac/institutes/grid.252487.e", 
          "name": [
            "Department of Mathematics, Faculty of Science, New Valley University, 72511, El-Khargah, Egypt"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mahmoud", 
        "givenName": "Ayman M.", 
        "id": "sg:person.012115040631.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012115040631.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Obafemi Awolowo University, 220005, Ile-Ife, Nigeria", 
          "id": "http://www.grid.ac/institutes/grid.10824.3f", 
          "name": [
            "Department of Mathematics, Obafemi Awolowo University, 220005, Ile-Ife, Nigeria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ademola", 
        "givenName": "Adeleke T.", 
        "id": "sg:person.010261047076.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010261047076.03"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-94-017-1965-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033261446", 
          "https://doi.org/10.1007/978-94-017-1965-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4684-9467-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007143588", 
          "https://doi.org/10.1007/978-1-4684-9467-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11432-018-9755-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1120394775", 
          "https://doi.org/10.1007/s11432-018-9755-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-4342-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050475850", 
          "https://doi.org/10.1007/978-1-4612-4342-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13662-017-1102-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083863740", 
          "https://doi.org/10.1186/s13662-017-1102-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-9892-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021421011", 
          "https://doi.org/10.1007/978-1-4612-9892-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13662-020-2520-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1124664423", 
          "https://doi.org/10.1186/s13662-020-2520-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13662-018-1721-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106330703", 
          "https://doi.org/10.1186/s13662-018-1721-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4615-9968-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006431894", 
          "https://doi.org/10.1007/978-1-4615-9968-5"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-04-07", 
    "datePublishedReg": "2022-04-07", 
    "description": "This article demonstrates the behaviour of solutions to a kind of nonlinear third order neutral stochastic differential equations. Setting x\u2032(t)=y(t)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$x^{\\prime }(t)=y(t)$\\end{document}, y\u2032(t)=z(t)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$y^{\\prime }(t) =z(t)$\\end{document} the third order differential equation is ablated to a system of first order differential equations together with its equivalent quadratic function to derive a suitable downright Lyapunov functional. This functional is utilised to obtain criteria which guarantee stochastic stability of the trivial solution and stochastic boundedness of the nontrivial solutions of the discussed equations. Furthermore, special cases are provided to verify the effectiveness and reliability of our hypotheses. The results of this paper complement the existing decisions on system of nonlinear neutral stochastic differential equations with delay and extend many results on third order neutral and stochastic differential equations with and without delay in the literature.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s13662-022-03703-x", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1421475", 
        "issn": [
          "2731-4235"
        ], 
        "name": "Advances in Continuous and Discrete Models", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2022"
      }
    ], 
    "keywords": [
      "neutral stochastic differential equations", 
      "stochastic differential equations", 
      "order differential equations", 
      "differential equations", 
      "behavior of solutions", 
      "nonlinear neutral stochastic differential equations", 
      "third-order differential equation", 
      "first-order differential equations", 
      "stochastic stability", 
      "stochastic boundedness", 
      "trivial solution", 
      "nontrivial solutions", 
      "equations", 
      "special case", 
      "third order", 
      "quadratic function", 
      "paper complement", 
      "solution", 
      "Lyapunov", 
      "boundedness", 
      "delay", 
      "system", 
      "kind", 
      "behavior", 
      "function", 
      "results", 
      "stability", 
      "order", 
      "effectiveness", 
      "reliability", 
      "cases", 
      "criteria", 
      "literature", 
      "article", 
      "complement", 
      "decisions", 
      "hypothesis"
    ], 
    "name": "On the behaviour of solutions to a kind of third order neutral stochastic differential equation with delay", 
    "pagination": "28", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1146947930"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13662-022-03703-x"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13662-022-03703-x", 
      "https://app.dimensions.ai/details/publication/pub.1146947930"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-08-04T17:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_925.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s13662-022-03703-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13662-022-03703-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13662-022-03703-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13662-022-03703-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13662-022-03703-x'


 

This table displays all metadata directly associated to this object as RDF triples.

143 TRIPLES      21 PREDICATES      70 URIs      52 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13662-022-03703-x schema:about anzsrc-for:01
2 anzsrc-for:0102
3 anzsrc-for:0104
4 schema:author Nf08988d797be44e096545dfe6af7a519
5 schema:citation sg:pub.10.1007/978-1-4612-4342-7
6 sg:pub.10.1007/978-1-4612-9892-2
7 sg:pub.10.1007/978-1-4615-9968-5
8 sg:pub.10.1007/978-1-4684-9467-9
9 sg:pub.10.1007/978-94-017-1965-0
10 sg:pub.10.1007/s11432-018-9755-7
11 sg:pub.10.1186/s13662-017-1102-9
12 sg:pub.10.1186/s13662-018-1721-9
13 sg:pub.10.1186/s13662-020-2520-7
14 schema:datePublished 2022-04-07
15 schema:datePublishedReg 2022-04-07
16 schema:description This article demonstrates the behaviour of solutions to a kind of nonlinear third order neutral stochastic differential equations. Setting x′(t)=y(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x^{\prime }(t)=y(t)$\end{document}, y′(t)=z(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$y^{\prime }(t) =z(t)$\end{document} the third order differential equation is ablated to a system of first order differential equations together with its equivalent quadratic function to derive a suitable downright Lyapunov functional. This functional is utilised to obtain criteria which guarantee stochastic stability of the trivial solution and stochastic boundedness of the nontrivial solutions of the discussed equations. Furthermore, special cases are provided to verify the effectiveness and reliability of our hypotheses. The results of this paper complement the existing decisions on system of nonlinear neutral stochastic differential equations with delay and extend many results on third order neutral and stochastic differential equations with and without delay in the literature.
17 schema:genre article
18 schema:isAccessibleForFree true
19 schema:isPartOf N15a3257bc82d42e9aa6f811d1071c84b
20 Nad80eaf4083f4dbaa9b34b8e09f8b4b3
21 sg:journal.1421475
22 schema:keywords Lyapunov
23 article
24 behavior
25 behavior of solutions
26 boundedness
27 cases
28 complement
29 criteria
30 decisions
31 delay
32 differential equations
33 effectiveness
34 equations
35 first-order differential equations
36 function
37 hypothesis
38 kind
39 literature
40 neutral stochastic differential equations
41 nonlinear neutral stochastic differential equations
42 nontrivial solutions
43 order
44 order differential equations
45 paper complement
46 quadratic function
47 reliability
48 results
49 solution
50 special case
51 stability
52 stochastic boundedness
53 stochastic differential equations
54 stochastic stability
55 system
56 third order
57 third-order differential equation
58 trivial solution
59 schema:name On the behaviour of solutions to a kind of third order neutral stochastic differential equation with delay
60 schema:pagination 28
61 schema:productId N4a4c0a01017c45ce82caa9aa1924b4ae
62 N750e287b7c3244eda6b55f2934539068
63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1146947930
64 https://doi.org/10.1186/s13662-022-03703-x
65 schema:sdDatePublished 2022-08-04T17:11
66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
67 schema:sdPublisher Nbacd2ae884204bb796fb1cd01aaf3337
68 schema:url https://doi.org/10.1186/s13662-022-03703-x
69 sgo:license sg:explorer/license/
70 sgo:sdDataset articles
71 rdf:type schema:ScholarlyArticle
72 N15a3257bc82d42e9aa6f811d1071c84b schema:volumeNumber 2022
73 rdf:type schema:PublicationVolume
74 N4a4c0a01017c45ce82caa9aa1924b4ae schema:name dimensions_id
75 schema:value pub.1146947930
76 rdf:type schema:PropertyValue
77 N750e287b7c3244eda6b55f2934539068 schema:name doi
78 schema:value 10.1186/s13662-022-03703-x
79 rdf:type schema:PropertyValue
80 N80d9fa6d7ab04835894e05230d25de87 rdf:first sg:person.010261047076.03
81 rdf:rest rdf:nil
82 Nad80eaf4083f4dbaa9b34b8e09f8b4b3 schema:issueNumber 1
83 rdf:type schema:PublicationIssue
84 Nbacd2ae884204bb796fb1cd01aaf3337 schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 Nf08988d797be44e096545dfe6af7a519 rdf:first sg:person.012115040631.22
87 rdf:rest N80d9fa6d7ab04835894e05230d25de87
88 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
89 schema:name Mathematical Sciences
90 rdf:type schema:DefinedTerm
91 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
92 schema:name Applied Mathematics
93 rdf:type schema:DefinedTerm
94 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
95 schema:name Statistics
96 rdf:type schema:DefinedTerm
97 sg:journal.1421475 schema:issn 2731-4235
98 schema:name Advances in Continuous and Discrete Models
99 schema:publisher Springer Nature
100 rdf:type schema:Periodical
101 sg:person.010261047076.03 schema:affiliation grid-institutes:grid.10824.3f
102 schema:familyName Ademola
103 schema:givenName Adeleke T.
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010261047076.03
105 rdf:type schema:Person
106 sg:person.012115040631.22 schema:affiliation grid-institutes:grid.252487.e
107 schema:familyName Mahmoud
108 schema:givenName Ayman M.
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012115040631.22
110 rdf:type schema:Person
111 sg:pub.10.1007/978-1-4612-4342-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050475850
112 https://doi.org/10.1007/978-1-4612-4342-7
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/978-1-4612-9892-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021421011
115 https://doi.org/10.1007/978-1-4612-9892-2
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/978-1-4615-9968-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006431894
118 https://doi.org/10.1007/978-1-4615-9968-5
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/978-1-4684-9467-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007143588
121 https://doi.org/10.1007/978-1-4684-9467-9
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/978-94-017-1965-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033261446
124 https://doi.org/10.1007/978-94-017-1965-0
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/s11432-018-9755-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1120394775
127 https://doi.org/10.1007/s11432-018-9755-7
128 rdf:type schema:CreativeWork
129 sg:pub.10.1186/s13662-017-1102-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083863740
130 https://doi.org/10.1186/s13662-017-1102-9
131 rdf:type schema:CreativeWork
132 sg:pub.10.1186/s13662-018-1721-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106330703
133 https://doi.org/10.1186/s13662-018-1721-9
134 rdf:type schema:CreativeWork
135 sg:pub.10.1186/s13662-020-2520-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124664423
136 https://doi.org/10.1186/s13662-020-2520-7
137 rdf:type schema:CreativeWork
138 grid-institutes:grid.10824.3f schema:alternateName Department of Mathematics, Obafemi Awolowo University, 220005, Ile-Ife, Nigeria
139 schema:name Department of Mathematics, Obafemi Awolowo University, 220005, Ile-Ife, Nigeria
140 rdf:type schema:Organization
141 grid-institutes:grid.252487.e schema:alternateName Department of Mathematics, Faculty of Science, New Valley University, 72511, El-Khargah, Egypt
142 schema:name Department of Mathematics, Faculty of Science, New Valley University, 72511, El-Khargah, Egypt
143 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...