Ontology type: schema:ScholarlyArticle Open Access: True
2022-04-09
AUTHORSFabian Kröpfl, Roland Maier, Daniel Peterseim
ABSTRACTThis paper studies the compression of partial differential operators using neural networks. We consider a family of operators, parameterized by a potentially high-dimensional space of coefficients that may vary on a large range of scales. Based on the existing methods that compress such a multiscale operator to a finite-dimensional sparse surrogate model on a given target scale, we propose to directly approximate the coefficient-to-surrogate map with a neural network. We emulate local assembly structures of the surrogates and thus only require a moderately sized network that can be trained efficiently in an offline phase. This enables large compression ratios and the online computation of a surrogate based on simple forward passes through the network is substantially accelerated compared to classical numerical upscaling approaches. We apply the abstract framework to a family of prototypical second-order elliptic heterogeneous diffusion operators as a demonstrating example. More... »
PAGES29
http://scigraph.springernature.com/pub.10.1186/s13662-022-03702-y
DOIhttp://dx.doi.org/10.1186/s13662-022-03702-y
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1146967700
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/35531267
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Artificial Intelligence and Image Processing",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Institute of Mathematics, University of Augsburg, Universit\u00e4tsstr. 12a, 86159, Augsburg, Germany",
"id": "http://www.grid.ac/institutes/grid.7307.3",
"name": [
"Institute of Mathematics, University of Augsburg, Universit\u00e4tsstr. 12a, 86159, Augsburg, Germany"
],
"type": "Organization"
},
"familyName": "Kr\u00f6pfl",
"givenName": "Fabian",
"id": "sg:person.012374440561.17",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012374440561.17"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute of Mathematics, Friedrich Schiller University Jena, Ernst-Abbe-Platz 2, 07743, Jena, Germany",
"id": "http://www.grid.ac/institutes/grid.9613.d",
"name": [
"Institute of Mathematics, Friedrich Schiller University Jena, Ernst-Abbe-Platz 2, 07743, Jena, Germany"
],
"type": "Organization"
},
"familyName": "Maier",
"givenName": "Roland",
"id": "sg:person.010550542430.66",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010550542430.66"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Centre for Advanced Analytics and Predictive Sciences (CAAPS), University of Augsburg, Universit\u00e4tsstr. 12a, 86159, Augsburg, Germany",
"id": "http://www.grid.ac/institutes/grid.7307.3",
"name": [
"Institute of Mathematics, University of Augsburg, Universit\u00e4tsstr. 12a, 86159, Augsburg, Germany",
"Centre for Advanced Analytics and Predictive Sciences (CAAPS), University of Augsburg, Universit\u00e4tsstr. 12a, 86159, Augsburg, Germany"
],
"type": "Organization"
},
"familyName": "Peterseim",
"givenName": "Daniel",
"id": "sg:person.011504111451.24",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011504111451.24"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s40304-017-0117-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1092617653",
"https://doi.org/10.1007/s40304-017-0117-6"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00365-021-09551-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1138543225",
"https://doi.org/10.1007/s00365-021-09551-4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10915-021-01532-w",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1138636581",
"https://doi.org/10.1007/s10915-021-01532-w"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10915-017-0394-y",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1083874125",
"https://doi.org/10.1007/s10915-017-0394-y"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10543-018-0735-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1107686992",
"https://doi.org/10.1007/s10543-018-0735-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10915-020-01304-y",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1131158595",
"https://doi.org/10.1007/s10915-020-01304-y"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s42985-019-0006-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1126175571",
"https://doi.org/10.1007/s42985-019-0006-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11837-020-04399-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1132153791",
"https://doi.org/10.1007/s11837-020-04399-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00211-014-0665-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1034485466",
"https://doi.org/10.1007/s00211-014-0665-6"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/3-540-26444-2_4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049950408",
"https://doi.org/10.1007/3-540-26444-2_4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00211-015-0703-z",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023671872",
"https://doi.org/10.1007/s00211-015-0703-z"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s40304-018-0127-z",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1101036374",
"https://doi.org/10.1007/s40304-018-0127-z"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-662-53611-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011825847",
"https://doi.org/10.1007/978-3-662-53611-7"
],
"type": "CreativeWork"
}
],
"datePublished": "2022-04-09",
"datePublishedReg": "2022-04-09",
"description": "This paper studies the compression of partial differential operators using neural networks. We consider a family of operators, parameterized by a potentially high-dimensional space of coefficients that may vary on a large range of scales. Based on the existing methods that compress such a multiscale operator to a finite-dimensional sparse surrogate model on a given target scale, we propose to directly approximate the coefficient-to-surrogate map with a neural network. We emulate local assembly structures of the surrogates and thus only require a moderately sized network that can be trained efficiently in an offline phase. This enables large compression ratios and the online computation of a surrogate based on simple forward passes through the network is substantially accelerated compared to classical numerical upscaling approaches. We apply the abstract framework to a family of prototypical second-order elliptic heterogeneous diffusion operators as a demonstrating example.",
"genre": "article",
"id": "sg:pub.10.1186/s13662-022-03702-y",
"isAccessibleForFree": true,
"isFundedItemOf": [
{
"id": "sg:grant.8964260",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1421475",
"issn": [
"2731-4235"
],
"name": "Advances in Continuous and Discrete Models",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "2022"
}
],
"keywords": [
"partial differential operators",
"neural network",
"family of operators",
"high-dimensional space",
"differential operators",
"diffusion operator",
"deep neural networks",
"multiscale operator",
"surrogate model",
"abstract framework",
"sized networks",
"online computation",
"large compression ratio",
"offline phase",
"demonstrating example",
"upscaling approach",
"operators",
"simple forward",
"operator compression",
"compression ratio",
"target scale",
"network",
"surrogate maps",
"large range",
"computation",
"coefficient",
"space",
"compression",
"framework",
"model",
"forward",
"assembly structure",
"maps",
"approach",
"structure",
"scale",
"example",
"surrogate",
"method",
"range",
"phase",
"family",
"ratio",
"paper"
],
"name": "Operator compression with deep neural networks",
"pagination": "29",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1146967700"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1186/s13662-022-03702-y"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"35531267"
]
}
],
"sameAs": [
"https://doi.org/10.1186/s13662-022-03702-y",
"https://app.dimensions.ai/details/publication/pub.1146967700"
],
"sdDataset": "articles",
"sdDatePublished": "2022-08-04T17:12",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_937.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1186/s13662-022-03702-y"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13662-022-03702-y'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13662-022-03702-y'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13662-022-03702-y'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13662-022-03702-y'
This table displays all metadata directly associated to this object as RDF triples.
177 TRIPLES
21 PREDICATES
82 URIs
61 LITERALS
7 BLANK NODES