Numerical solution of fractional differential equations with Caputo derivative by using numerical fractional predict–correct technique View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-03-18

AUTHORS

Nur Amirah Zabidi, Zanariah Abdul Majid, Adem Kilicman, Zarina Bibi Ibrahim

ABSTRACT

Fractional differential equations have recently demonstrated their importance in a variety of fields, including medicine, applied sciences, and engineering. The main objective of this study is to propose an Adams-type multistep method for solving differential equations of fractional order. The method is developed by implementing the Lagrange interpolation and taking into account the idea of the Adams–Moulton method for fractional case. The fractional derivative applied in this study is in the Caputo derivative operator. The analysis of the proposed method is presented in terms of order of the method, order of accuracy, and convergence analysis, with the proposed method being proved to converge. The stability of the method is also examined, where the stability regions appear to be symmetric to the real axis for various values of α. In order to validate the competency of the proposed method, several numerical examples for solving linear and nonlinear fractional differential equations are included. The method will be presented in the numerical predict–correct technique for the condition where α∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha \in (0,1)$\end{document}, in which α represents the order of fractional derivatives of Dαy(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$D^{\alpha }y(t)$\end{document}. More... »

PAGES

26

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13662-022-03697-6

DOI

http://dx.doi.org/10.1186/s13662-022-03697-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1146389211


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute for Mathematical Research, Universiti Putra Malaysia, UPM Serdang, 43400, Selangor, Malaysia", 
          "id": "http://www.grid.ac/institutes/grid.11142.37", 
          "name": [
            "Institute for Mathematical Research, Universiti Putra Malaysia, UPM Serdang, 43400, Selangor, Malaysia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zabidi", 
        "givenName": "Nur Amirah", 
        "id": "sg:person.010546030775.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010546030775.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, 43400, Selangor, Malaysia", 
          "id": "http://www.grid.ac/institutes/grid.11142.37", 
          "name": [
            "Institute for Mathematical Research, Universiti Putra Malaysia, UPM Serdang, 43400, Selangor, Malaysia", 
            "Department of Mathematics, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, 43400, Selangor, Malaysia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Majid", 
        "givenName": "Zanariah Abdul", 
        "id": "sg:person.016066251207.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016066251207.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, 43400, Selangor, Malaysia", 
          "id": "http://www.grid.ac/institutes/grid.11142.37", 
          "name": [
            "Institute for Mathematical Research, Universiti Putra Malaysia, UPM Serdang, 43400, Selangor, Malaysia", 
            "Department of Mathematics, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, 43400, Selangor, Malaysia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kilicman", 
        "givenName": "Adem", 
        "id": "sg:person.014231676063.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014231676063.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, 43400, Selangor, Malaysia", 
          "id": "http://www.grid.ac/institutes/grid.11142.37", 
          "name": [
            "Institute for Mathematical Research, Universiti Putra Malaysia, UPM Serdang, 43400, Selangor, Malaysia", 
            "Department of Mathematics, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, 43400, Selangor, Malaysia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ibrahim", 
        "givenName": "Zarina Bibi", 
        "id": "sg:person.010440005005.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010440005005.52"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/b:numa.0000027736.85078.be", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005718557", 
          "https://doi.org/10.1023/b:numa.0000027736.85078.be"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00009-006-0097-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011234594", 
          "https://doi.org/10.1007/s00009-006-0097-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1016592219341", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028652887", 
          "https://doi.org/10.1023/a:1016592219341"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-14574-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022895029", 
          "https://doi.org/10.1007/978-3-642-14574-2"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-03-18", 
    "datePublishedReg": "2022-03-18", 
    "description": "Fractional differential equations have recently demonstrated their importance in a variety of fields, including medicine, applied sciences, and engineering. The main objective of this study is to propose an Adams-type multistep method for solving differential equations of fractional order. The method is developed by implementing the Lagrange interpolation and taking into account the idea of the Adams\u2013Moulton method for fractional case. The fractional derivative applied in this study is in the Caputo derivative operator. The analysis of the proposed method is presented in terms of order of the method, order of accuracy, and convergence analysis, with the proposed method being proved to converge. The stability of the method is also examined, where the stability regions appear to be symmetric to the real axis for various values of \u03b1. In order to validate the competency of the proposed method, several numerical examples for solving linear and nonlinear fractional differential equations are included. The method will be presented in the numerical predict\u2013correct technique for the condition where \u03b1\u2208(0,1)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\alpha \\in (0,1)$\\end{document}, in which \u03b1 represents the order of fractional derivatives of D\u03b1y(t)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$D^{\\alpha }y(t)$\\end{document}.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s13662-022-03697-6", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1052613", 
        "issn": [
          "1687-1839", 
          "2731-4235"
        ], 
        "name": "Advances in Continuous and Discrete Models", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2022"
      }
    ], 
    "keywords": [
      "fractional differential equations", 
      "differential equations", 
      "fractional derivative", 
      "nonlinear fractional differential equations", 
      "Caputo derivative operator", 
      "order of accuracy", 
      "Adams-Moulton method", 
      "derivative operator", 
      "convergence analysis", 
      "multistep methods", 
      "terms of order", 
      "fractional case", 
      "numerical solution", 
      "fractional order", 
      "numerical examples", 
      "stability region", 
      "real axis", 
      "equations", 
      "Lagrange interpolation", 
      "variety of fields", 
      "Caputo", 
      "Applied Sciences", 
      "operators", 
      "interpolation", 
      "order", 
      "solution", 
      "field", 
      "technique", 
      "main objective", 
      "derivatives", 
      "accuracy", 
      "terms", 
      "account", 
      "stability", 
      "axis", 
      "idea", 
      "analysis", 
      "engineering", 
      "cases", 
      "conditions", 
      "science", 
      "values", 
      "variety", 
      "objective", 
      "region", 
      "importance", 
      "study", 
      "competencies", 
      "medicine", 
      "method", 
      "example"
    ], 
    "name": "Numerical solution of fractional differential equations with Caputo derivative by using numerical fractional predict\u2013correct technique", 
    "pagination": "26", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1146389211"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13662-022-03697-6"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13662-022-03697-6", 
      "https://app.dimensions.ai/details/publication/pub.1146389211"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_937.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s13662-022-03697-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13662-022-03697-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13662-022-03697-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13662-022-03697-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13662-022-03697-6'


 

This table displays all metadata directly associated to this object as RDF triples.

147 TRIPLES      21 PREDICATES      79 URIs      67 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13662-022-03697-6 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author Nbadd920c988a4dec9015ed452b84f0b2
4 schema:citation sg:pub.10.1007/978-3-642-14574-2
5 sg:pub.10.1007/s00009-006-0097-3
6 sg:pub.10.1023/a:1016592219341
7 sg:pub.10.1023/b:numa.0000027736.85078.be
8 schema:datePublished 2022-03-18
9 schema:datePublishedReg 2022-03-18
10 schema:description Fractional differential equations have recently demonstrated their importance in a variety of fields, including medicine, applied sciences, and engineering. The main objective of this study is to propose an Adams-type multistep method for solving differential equations of fractional order. The method is developed by implementing the Lagrange interpolation and taking into account the idea of the Adams–Moulton method for fractional case. The fractional derivative applied in this study is in the Caputo derivative operator. The analysis of the proposed method is presented in terms of order of the method, order of accuracy, and convergence analysis, with the proposed method being proved to converge. The stability of the method is also examined, where the stability regions appear to be symmetric to the real axis for various values of α. In order to validate the competency of the proposed method, several numerical examples for solving linear and nonlinear fractional differential equations are included. The method will be presented in the numerical predict–correct technique for the condition where α∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha \in (0,1)$\end{document}, in which α represents the order of fractional derivatives of Dαy(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$D^{\alpha }y(t)$\end{document}.
11 schema:genre article
12 schema:isAccessibleForFree true
13 schema:isPartOf N31c6403f03f34a86b67770933039cdca
14 Na3286762e2bb443fbe50b7b2f151f43c
15 sg:journal.1052613
16 schema:keywords Adams-Moulton method
17 Applied Sciences
18 Caputo
19 Caputo derivative operator
20 Lagrange interpolation
21 account
22 accuracy
23 analysis
24 axis
25 cases
26 competencies
27 conditions
28 convergence analysis
29 derivative operator
30 derivatives
31 differential equations
32 engineering
33 equations
34 example
35 field
36 fractional case
37 fractional derivative
38 fractional differential equations
39 fractional order
40 idea
41 importance
42 interpolation
43 main objective
44 medicine
45 method
46 multistep methods
47 nonlinear fractional differential equations
48 numerical examples
49 numerical solution
50 objective
51 operators
52 order
53 order of accuracy
54 real axis
55 region
56 science
57 solution
58 stability
59 stability region
60 study
61 technique
62 terms
63 terms of order
64 values
65 variety
66 variety of fields
67 schema:name Numerical solution of fractional differential equations with Caputo derivative by using numerical fractional predict–correct technique
68 schema:pagination 26
69 schema:productId N2b387c54dc9045a19ff1cefff01df735
70 Nd2e592d214144a03abe99c4bd9f2735c
71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1146389211
72 https://doi.org/10.1186/s13662-022-03697-6
73 schema:sdDatePublished 2022-09-02T16:08
74 schema:sdLicense https://scigraph.springernature.com/explorer/license/
75 schema:sdPublisher Na362114b8be04f56b06014e0b55d580a
76 schema:url https://doi.org/10.1186/s13662-022-03697-6
77 sgo:license sg:explorer/license/
78 sgo:sdDataset articles
79 rdf:type schema:ScholarlyArticle
80 N2b387c54dc9045a19ff1cefff01df735 schema:name doi
81 schema:value 10.1186/s13662-022-03697-6
82 rdf:type schema:PropertyValue
83 N2b429f39423a42abaa4e62668342bb4f rdf:first sg:person.010440005005.52
84 rdf:rest rdf:nil
85 N31c6403f03f34a86b67770933039cdca schema:volumeNumber 2022
86 rdf:type schema:PublicationVolume
87 Na3286762e2bb443fbe50b7b2f151f43c schema:issueNumber 1
88 rdf:type schema:PublicationIssue
89 Na362114b8be04f56b06014e0b55d580a schema:name Springer Nature - SN SciGraph project
90 rdf:type schema:Organization
91 Nbadd920c988a4dec9015ed452b84f0b2 rdf:first sg:person.010546030775.88
92 rdf:rest Nf80afc4b14da40f59de2ccbc93030f68
93 Nd2e592d214144a03abe99c4bd9f2735c schema:name dimensions_id
94 schema:value pub.1146389211
95 rdf:type schema:PropertyValue
96 Nf80afc4b14da40f59de2ccbc93030f68 rdf:first sg:person.016066251207.83
97 rdf:rest Nffb577a1fa1243738cc4ad0605372f65
98 Nffb577a1fa1243738cc4ad0605372f65 rdf:first sg:person.014231676063.05
99 rdf:rest N2b429f39423a42abaa4e62668342bb4f
100 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
101 schema:name Mathematical Sciences
102 rdf:type schema:DefinedTerm
103 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
104 schema:name Numerical and Computational Mathematics
105 rdf:type schema:DefinedTerm
106 sg:journal.1052613 schema:issn 1687-1839
107 2731-4235
108 schema:name Advances in Continuous and Discrete Models
109 schema:publisher Springer Nature
110 rdf:type schema:Periodical
111 sg:person.010440005005.52 schema:affiliation grid-institutes:grid.11142.37
112 schema:familyName Ibrahim
113 schema:givenName Zarina Bibi
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010440005005.52
115 rdf:type schema:Person
116 sg:person.010546030775.88 schema:affiliation grid-institutes:grid.11142.37
117 schema:familyName Zabidi
118 schema:givenName Nur Amirah
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010546030775.88
120 rdf:type schema:Person
121 sg:person.014231676063.05 schema:affiliation grid-institutes:grid.11142.37
122 schema:familyName Kilicman
123 schema:givenName Adem
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014231676063.05
125 rdf:type schema:Person
126 sg:person.016066251207.83 schema:affiliation grid-institutes:grid.11142.37
127 schema:familyName Majid
128 schema:givenName Zanariah Abdul
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016066251207.83
130 rdf:type schema:Person
131 sg:pub.10.1007/978-3-642-14574-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022895029
132 https://doi.org/10.1007/978-3-642-14574-2
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/s00009-006-0097-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011234594
135 https://doi.org/10.1007/s00009-006-0097-3
136 rdf:type schema:CreativeWork
137 sg:pub.10.1023/a:1016592219341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028652887
138 https://doi.org/10.1023/a:1016592219341
139 rdf:type schema:CreativeWork
140 sg:pub.10.1023/b:numa.0000027736.85078.be schema:sameAs https://app.dimensions.ai/details/publication/pub.1005718557
141 https://doi.org/10.1023/b:numa.0000027736.85078.be
142 rdf:type schema:CreativeWork
143 grid-institutes:grid.11142.37 schema:alternateName Department of Mathematics, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, 43400, Selangor, Malaysia
144 Institute for Mathematical Research, Universiti Putra Malaysia, UPM Serdang, 43400, Selangor, Malaysia
145 schema:name Department of Mathematics, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, 43400, Selangor, Malaysia
146 Institute for Mathematical Research, Universiti Putra Malaysia, UPM Serdang, 43400, Selangor, Malaysia
147 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...