A delayed plant disease model with Caputo fractional derivatives View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-01-29

AUTHORS

Pushpendra Kumar, Dumitru Baleanu, Vedat Suat Erturk, Mustafa Inc, V. Govindaraj

ABSTRACT

We analyze a time-delay Caputo-type fractional mathematical model containing the infection rate of Beddington–DeAngelis functional response to study the structure of a vector-borne plant epidemic. We prove the unique global solution existence for the given delay mathematical model by using fixed point results. We use the Adams–Bashforth–Moulton P-C algorithm for solving the given dynamical model. We give a number of graphical interpretations of the proposed solution. A number of novel results are demonstrated from the given practical and theoretical observations. By using 3-D plots we observe the variations in the flatness of our plots when the fractional order varies. The role of time delay on the proposed plant disease dynamics and the effects of infection rate in the population of susceptible and infectious classes are investigated. The main motivation of this research study is examining the dynamics of the vector-borne epidemic in the sense of fractional derivatives under memory effects. This study is an example of how the fractional derivatives are useful in plant epidemiology. The application of Caputo derivative with equal dimensionality includes the memory in the model, which is the main novelty of this study. More... »

PAGES

11

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13662-022-03684-x

DOI

http://dx.doi.org/10.1186/s13662-022-03684-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1145099911

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/35450199


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, National Institute of Technology Puducherry, 609609, Karaikal, India", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Mathematics, National Institute of Technology Puducherry, 609609, Karaikal, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kumar", 
        "givenName": "Pushpendra", 
        "id": "sg:person.016117641133.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016117641133.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Space Sciences, R76900, Magurele-Bucharest, Romania", 
          "id": "http://www.grid.ac/institutes/grid.450283.8", 
          "name": [
            "Department of Mathematics, Cankaya University, Ankara, Turkey", 
            "Institute of Space Sciences, R76900, Magurele-Bucharest, Romania"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Baleanu", 
        "givenName": "Dumitru", 
        "id": "sg:person.01217763631.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217763631.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Ondokuz Mayis University, 55200, Atakum, Samsun, Turkey", 
          "id": "http://www.grid.ac/institutes/grid.411049.9", 
          "name": [
            "Department of Mathematics, Ondokuz Mayis University, 55200, Atakum, Samsun, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Erturk", 
        "givenName": "Vedat Suat", 
        "id": "sg:person.012412637437.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012412637437.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Computer Engineering, Biruni Universiity, Istanbul, Turkey", 
            "Department of Mathematics, Science Faculty, Firat University, 23119, Elazig, Turkey", 
            "Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Inc", 
        "givenName": "Mustafa", 
        "id": "sg:person.015776601723.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015776601723.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, National Institute of Technology Puducherry, 609609, Karaikal, India", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Mathematics, National Institute of Technology Puducherry, 609609, Karaikal, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Govindaraj", 
        "givenName": "V.", 
        "id": "sg:person.014676775243.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014676775243.51"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s40974-016-0033-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020808631", 
          "https://doi.org/10.1007/s40974-016-0033-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1687-1847-2014-59", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023117234", 
          "https://doi.org/10.1186/1687-1847-2014-59"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1515/fca-2015-0026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067531681", 
          "https://doi.org/10.1515/fca-2015-0026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11587-020-00508-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1126173352", 
          "https://doi.org/10.1007/s11587-020-00508-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00009-017-0997-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091388974", 
          "https://doi.org/10.1007/s00009-017-0997-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05286", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039464463", 
          "https://doi.org/10.1038/nature05286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13662-021-03213-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1134729223", 
          "https://doi.org/10.1186/s13662-021-03213-2"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-01-29", 
    "datePublishedReg": "2022-01-29", 
    "description": "We analyze a time-delay Caputo-type fractional mathematical model containing the infection rate of Beddington\u2013DeAngelis functional response to study the structure of a vector-borne plant epidemic. We prove the unique global solution existence for the given delay mathematical model by using fixed point results. We use the Adams\u2013Bashforth\u2013Moulton P-C algorithm for solving the given dynamical model. We give a number of graphical interpretations of the proposed solution. A number of novel results are demonstrated from the given practical and theoretical observations. By using 3-D plots we observe the variations in the flatness of our plots when the fractional order varies. The role of time delay on the proposed plant disease dynamics and the effects of infection rate in the population of susceptible and infectious classes are investigated. The main motivation of this research study is examining the dynamics of the vector-borne epidemic in the sense of fractional derivatives under memory effects. This study is an example of how the fractional derivatives are useful in plant epidemiology. The application of Caputo derivative with equal dimensionality includes the memory in the model, which is the main novelty of this study.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s13662-022-03684-x", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1052613", 
        "issn": [
          "1687-1839", 
          "2731-4235"
        ], 
        "name": "Advances in Continuous and Discrete Models", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2022"
      }
    ], 
    "keywords": [
      "fractional derivative", 
      "mathematical model", 
      "delay mathematical model", 
      "fractional mathematical model", 
      "Caputo fractional derivative", 
      "solution existence", 
      "Beddington\u2013DeAngelis functional response", 
      "Adams-Bashforth", 
      "dynamical model", 
      "fractional order", 
      "point results", 
      "plant disease model", 
      "infectious classes", 
      "plant epidemiology", 
      "time delay", 
      "plant disease dynamics", 
      "graphical interpretation", 
      "main novelty", 
      "plant epidemics", 
      "disease dynamics", 
      "theoretical observations", 
      "main motivation", 
      "vector-borne epidemics", 
      "C algorithm", 
      "novel results", 
      "Caputo", 
      "dynamics", 
      "model", 
      "memory effect", 
      "equal dimensionality", 
      "dimensionality", 
      "algorithm", 
      "existence", 
      "solution", 
      "class", 
      "derivatives", 
      "flatness", 
      "number", 
      "delay", 
      "applications", 
      "novelty", 
      "functional response", 
      "results", 
      "sense", 
      "order", 
      "structure", 
      "interpretation", 
      "observations", 
      "plots", 
      "variation", 
      "epidemic", 
      "effect", 
      "motivation", 
      "rate", 
      "disease models", 
      "study", 
      "memory", 
      "research studies", 
      "response", 
      "role", 
      "population", 
      "infection rate", 
      "epidemiology", 
      "example"
    ], 
    "name": "A delayed plant disease model with Caputo fractional derivatives", 
    "pagination": "11", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1145099911"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13662-022-03684-x"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "35450199"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13662-022-03684-x", 
      "https://app.dimensions.ai/details/publication/pub.1145099911"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T21:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_931.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s13662-022-03684-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13662-022-03684-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13662-022-03684-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13662-022-03684-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13662-022-03684-x'


 

This table displays all metadata directly associated to this object as RDF triples.

192 TRIPLES      21 PREDICATES      96 URIs      81 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13662-022-03684-x schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author N71a215686dbc4449a488e9f4e04bc537
4 schema:citation sg:pub.10.1007/s00009-017-0997-4
5 sg:pub.10.1007/s11587-020-00508-6
6 sg:pub.10.1007/s40974-016-0033-8
7 sg:pub.10.1038/nature05286
8 sg:pub.10.1186/1687-1847-2014-59
9 sg:pub.10.1186/s13662-021-03213-2
10 sg:pub.10.1515/fca-2015-0026
11 schema:datePublished 2022-01-29
12 schema:datePublishedReg 2022-01-29
13 schema:description We analyze a time-delay Caputo-type fractional mathematical model containing the infection rate of Beddington–DeAngelis functional response to study the structure of a vector-borne plant epidemic. We prove the unique global solution existence for the given delay mathematical model by using fixed point results. We use the Adams–Bashforth–Moulton P-C algorithm for solving the given dynamical model. We give a number of graphical interpretations of the proposed solution. A number of novel results are demonstrated from the given practical and theoretical observations. By using 3-D plots we observe the variations in the flatness of our plots when the fractional order varies. The role of time delay on the proposed plant disease dynamics and the effects of infection rate in the population of susceptible and infectious classes are investigated. The main motivation of this research study is examining the dynamics of the vector-borne epidemic in the sense of fractional derivatives under memory effects. This study is an example of how the fractional derivatives are useful in plant epidemiology. The application of Caputo derivative with equal dimensionality includes the memory in the model, which is the main novelty of this study.
14 schema:genre article
15 schema:isAccessibleForFree true
16 schema:isPartOf N8363ee0e1fd14048b6fe8311a4a1e17c
17 N8bc3612a2d4c45debebc84aca6ac44e8
18 sg:journal.1052613
19 schema:keywords Adams-Bashforth
20 Beddington–DeAngelis functional response
21 C algorithm
22 Caputo
23 Caputo fractional derivative
24 algorithm
25 applications
26 class
27 delay
28 delay mathematical model
29 derivatives
30 dimensionality
31 disease dynamics
32 disease models
33 dynamical model
34 dynamics
35 effect
36 epidemic
37 epidemiology
38 equal dimensionality
39 example
40 existence
41 flatness
42 fractional derivative
43 fractional mathematical model
44 fractional order
45 functional response
46 graphical interpretation
47 infection rate
48 infectious classes
49 interpretation
50 main motivation
51 main novelty
52 mathematical model
53 memory
54 memory effect
55 model
56 motivation
57 novel results
58 novelty
59 number
60 observations
61 order
62 plant disease dynamics
63 plant disease model
64 plant epidemics
65 plant epidemiology
66 plots
67 point results
68 population
69 rate
70 research studies
71 response
72 results
73 role
74 sense
75 solution
76 solution existence
77 structure
78 study
79 theoretical observations
80 time delay
81 variation
82 vector-borne epidemics
83 schema:name A delayed plant disease model with Caputo fractional derivatives
84 schema:pagination 11
85 schema:productId N59c14fcd1930409f8f6b3907d30127bc
86 N78ff75b403d14f768ee7898c6c5e84a6
87 N7ce3b52e871a4ab6bfb80d3928bb9bd9
88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1145099911
89 https://doi.org/10.1186/s13662-022-03684-x
90 schema:sdDatePublished 2022-11-24T21:09
91 schema:sdLicense https://scigraph.springernature.com/explorer/license/
92 schema:sdPublisher Nca629267ea734b38b274545604cd1a69
93 schema:url https://doi.org/10.1186/s13662-022-03684-x
94 sgo:license sg:explorer/license/
95 sgo:sdDataset articles
96 rdf:type schema:ScholarlyArticle
97 N2fb83c7c10f748a397c1ab0adc57d825 rdf:first sg:person.014676775243.51
98 rdf:rest rdf:nil
99 N59c14fcd1930409f8f6b3907d30127bc schema:name dimensions_id
100 schema:value pub.1145099911
101 rdf:type schema:PropertyValue
102 N71a215686dbc4449a488e9f4e04bc537 rdf:first sg:person.016117641133.45
103 rdf:rest Ne71ac9d95ebe487887472c15567afb2c
104 N78ff75b403d14f768ee7898c6c5e84a6 schema:name doi
105 schema:value 10.1186/s13662-022-03684-x
106 rdf:type schema:PropertyValue
107 N7b4eae3f5b91481a98b3faa24674e4f0 rdf:first sg:person.012412637437.53
108 rdf:rest Nd72f2ad7a44e4592b56b523199a99c5f
109 N7ce3b52e871a4ab6bfb80d3928bb9bd9 schema:name pubmed_id
110 schema:value 35450199
111 rdf:type schema:PropertyValue
112 N8363ee0e1fd14048b6fe8311a4a1e17c schema:volumeNumber 2022
113 rdf:type schema:PublicationVolume
114 N8bc3612a2d4c45debebc84aca6ac44e8 schema:issueNumber 1
115 rdf:type schema:PublicationIssue
116 Nca629267ea734b38b274545604cd1a69 schema:name Springer Nature - SN SciGraph project
117 rdf:type schema:Organization
118 Nd72f2ad7a44e4592b56b523199a99c5f rdf:first sg:person.015776601723.69
119 rdf:rest N2fb83c7c10f748a397c1ab0adc57d825
120 Ne71ac9d95ebe487887472c15567afb2c rdf:first sg:person.01217763631.11
121 rdf:rest N7b4eae3f5b91481a98b3faa24674e4f0
122 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
123 schema:name Mathematical Sciences
124 rdf:type schema:DefinedTerm
125 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
126 schema:name Applied Mathematics
127 rdf:type schema:DefinedTerm
128 sg:journal.1052613 schema:issn 1687-1839
129 2731-4235
130 schema:name Advances in Continuous and Discrete Models
131 schema:publisher Springer Nature
132 rdf:type schema:Periodical
133 sg:person.01217763631.11 schema:affiliation grid-institutes:grid.450283.8
134 schema:familyName Baleanu
135 schema:givenName Dumitru
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217763631.11
137 rdf:type schema:Person
138 sg:person.012412637437.53 schema:affiliation grid-institutes:grid.411049.9
139 schema:familyName Erturk
140 schema:givenName Vedat Suat
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012412637437.53
142 rdf:type schema:Person
143 sg:person.014676775243.51 schema:affiliation grid-institutes:None
144 schema:familyName Govindaraj
145 schema:givenName V.
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014676775243.51
147 rdf:type schema:Person
148 sg:person.015776601723.69 schema:affiliation grid-institutes:None
149 schema:familyName Inc
150 schema:givenName Mustafa
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015776601723.69
152 rdf:type schema:Person
153 sg:person.016117641133.45 schema:affiliation grid-institutes:None
154 schema:familyName Kumar
155 schema:givenName Pushpendra
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016117641133.45
157 rdf:type schema:Person
158 sg:pub.10.1007/s00009-017-0997-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091388974
159 https://doi.org/10.1007/s00009-017-0997-4
160 rdf:type schema:CreativeWork
161 sg:pub.10.1007/s11587-020-00508-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1126173352
162 https://doi.org/10.1007/s11587-020-00508-6
163 rdf:type schema:CreativeWork
164 sg:pub.10.1007/s40974-016-0033-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020808631
165 https://doi.org/10.1007/s40974-016-0033-8
166 rdf:type schema:CreativeWork
167 sg:pub.10.1038/nature05286 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039464463
168 https://doi.org/10.1038/nature05286
169 rdf:type schema:CreativeWork
170 sg:pub.10.1186/1687-1847-2014-59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023117234
171 https://doi.org/10.1186/1687-1847-2014-59
172 rdf:type schema:CreativeWork
173 sg:pub.10.1186/s13662-021-03213-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1134729223
174 https://doi.org/10.1186/s13662-021-03213-2
175 rdf:type schema:CreativeWork
176 sg:pub.10.1515/fca-2015-0026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067531681
177 https://doi.org/10.1515/fca-2015-0026
178 rdf:type schema:CreativeWork
179 grid-institutes:None schema:alternateName Department of Mathematics, National Institute of Technology Puducherry, 609609, Karaikal, India
180 Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
181 schema:name Department of Computer Engineering, Biruni Universiity, Istanbul, Turkey
182 Department of Mathematics, National Institute of Technology Puducherry, 609609, Karaikal, India
183 Department of Mathematics, Science Faculty, Firat University, 23119, Elazig, Turkey
184 Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
185 rdf:type schema:Organization
186 grid-institutes:grid.411049.9 schema:alternateName Department of Mathematics, Ondokuz Mayis University, 55200, Atakum, Samsun, Turkey
187 schema:name Department of Mathematics, Ondokuz Mayis University, 55200, Atakum, Samsun, Turkey
188 rdf:type schema:Organization
189 grid-institutes:grid.450283.8 schema:alternateName Institute of Space Sciences, R76900, Magurele-Bucharest, Romania
190 schema:name Department of Mathematics, Cankaya University, Ankara, Turkey
191 Institute of Space Sciences, R76900, Magurele-Bucharest, Romania
192 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...