Effects of greenhouse gases and hypoxia on the population of aquatic species: a fractional mathematical model View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-04-15

AUTHORS

Pushpendra Kumar, V. Govindaraj, Vedat Suat Erturk, Mohamed S. Mohamed

ABSTRACT

Study of ecosystems has always been an interesting topic in the view of real-world dynamics. In this paper, we propose a fractional-order nonlinear mathematical model to describe the prelude of deteriorating quality of water cause of greenhouse gases on the population of aquatic animals. In the proposed system, we recall that greenhouse gases raise the temperature of water, and because of this reason, the dissolved oxygen level goes down, and also the rate of circulation of disintegrated oxygen by the aquatic animals rises, which causes a decrement in the density of aquatic species. We use a generalized form of the Caputo fractional derivative to describe the dynamics of the proposed problem. We also investigate equilibrium points of the given fractional-order model and discuss the asymptotic stability of the equilibria of the proposed autonomous model. We recall some important results to prove the existence of a unique solution of the model. For finding the numerical solution of the established fractional-order system, we apply a generalized predictor–corrector technique in the sense of proposed derivative and also justify the stability of the method. To express the novelty of the simulated results, we perform a number of graphs at various fractional-order cases. The given study is fully novel and useful for understanding the proposed real-world phenomena. More... »

PAGES

31

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13662-022-03679-8

DOI

http://dx.doi.org/10.1186/s13662-022-03679-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1147152169

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/35450200


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0602", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Ecology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, National Institute of Technology Puducherry, 609609, Karaikal, India", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Mathematics, National Institute of Technology Puducherry, 609609, Karaikal, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kumar", 
        "givenName": "Pushpendra", 
        "id": "sg:person.016117641133.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016117641133.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, National Institute of Technology Puducherry, 609609, Karaikal, India", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Mathematics, National Institute of Technology Puducherry, 609609, Karaikal, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Govindaraj", 
        "givenName": "V.", 
        "id": "sg:person.014676775243.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014676775243.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Faculty of Arts and Sciences, Ondokuz Mayis University, 55200, Atakum, Samsun, Turkey", 
          "id": "http://www.grid.ac/institutes/grid.411049.9", 
          "name": [
            "Department of Mathematics, Faculty of Arts and Sciences, Ondokuz Mayis University, 55200, Atakum, Samsun, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Erturk", 
        "givenName": "Vedat Suat", 
        "id": "sg:person.012412637437.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012412637437.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics and Statistics, College of Science, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia", 
          "id": "http://www.grid.ac/institutes/grid.412895.3", 
          "name": [
            "Department of Mathematics and Statistics, College of Science, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mohamed", 
        "givenName": "Mohamed S.", 
        "id": "sg:person.015527435207.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015527435207.27"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s12190-019-01308-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1123312942", 
          "https://doi.org/10.1007/s12190-019-01308-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-015-1860-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023949238", 
          "https://doi.org/10.1007/s00521-015-1860-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13662-021-03499-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1139793369", 
          "https://doi.org/10.1186/s13662-021-03499-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11538-015-0126-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022339161", 
          "https://doi.org/10.1007/s11538-015-0126-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40808-016-0228-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017651572", 
          "https://doi.org/10.1007/s40808-016-0228-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-981-15-0430-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1122851878", 
          "https://doi.org/10.1007/978-981-15-0430-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13662-018-1500-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101066835", 
          "https://doi.org/10.1186/s13662-018-1500-7"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-04-15", 
    "datePublishedReg": "2022-04-15", 
    "description": "Study of ecosystems has always been an interesting topic in the view of real-world dynamics. In this paper, we propose a fractional-order nonlinear mathematical model to describe the prelude of deteriorating quality of water cause of greenhouse gases on the population of aquatic animals. In the proposed system, we recall that greenhouse gases raise the temperature of water, and because of this reason, the dissolved oxygen level goes down, and also the rate of circulation of disintegrated oxygen by the aquatic animals rises, which causes a decrement in the density of aquatic species. We use a generalized form of the Caputo fractional derivative to describe the dynamics of the proposed problem. We also investigate equilibrium points of the given fractional-order model and discuss the asymptotic stability of the equilibria of the proposed autonomous model. We recall some important results to prove the existence of a unique solution of the model. For finding the numerical solution of the established fractional-order system, we apply a generalized predictor\u2013corrector technique in the sense of proposed derivative and also justify the stability of the method. To express the novelty of the simulated results, we perform a number of graphs at various fractional-order cases. The given study is fully novel and useful for understanding the proposed real-world phenomena.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s13662-022-03679-8", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1421475", 
        "issn": [
          "2731-4235"
        ], 
        "name": "Advances in Continuous and Discrete Models", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2022"
      }
    ], 
    "keywords": [
      "mathematical model", 
      "fractional mathematical model", 
      "Caputo fractional derivative", 
      "fractional-order systems", 
      "fractional order case", 
      "predictor-corrector technique", 
      "number of graphs", 
      "fractional-order model", 
      "real-world phenomena", 
      "fractional derivative", 
      "asymptotic stability", 
      "numerical solution", 
      "equilibrium point", 
      "unique solution", 
      "real-world dynamics", 
      "generalized form", 
      "autonomous model", 
      "important results", 
      "dynamics", 
      "solution", 
      "interesting topic", 
      "model", 
      "graph", 
      "simulated results", 
      "study of ecosystems", 
      "existence", 
      "problem", 
      "system", 
      "stability", 
      "equilibrium", 
      "derivatives", 
      "rate of circulation", 
      "point", 
      "phenomenon", 
      "novelty", 
      "results", 
      "sense", 
      "density", 
      "technique", 
      "number", 
      "gases", 
      "form", 
      "cases", 
      "temperature", 
      "temperature of water", 
      "topic", 
      "water causes", 
      "view", 
      "effect", 
      "study", 
      "quality", 
      "prelude", 
      "reasons", 
      "rate", 
      "circulation", 
      "decrement", 
      "population", 
      "levels", 
      "greenhouse gases", 
      "oxygen", 
      "water", 
      "species", 
      "aquatic animals", 
      "aquatic species", 
      "ecosystems", 
      "cause", 
      "oxygen levels", 
      "animals", 
      "paper", 
      "method", 
      "hypoxia"
    ], 
    "name": "Effects of greenhouse gases and hypoxia on the population of aquatic species: a fractional mathematical model", 
    "pagination": "31", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1147152169"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13662-022-03679-8"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "35450200"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13662-022-03679-8", 
      "https://app.dimensions.ai/details/publication/pub.1147152169"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-08-04T17:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_921.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s13662-022-03679-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13662-022-03679-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13662-022-03679-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13662-022-03679-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13662-022-03679-8'


 

This table displays all metadata directly associated to this object as RDF triples.

186 TRIPLES      21 PREDICATES      103 URIs      88 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13662-022-03679-8 schema:about anzsrc-for:06
2 anzsrc-for:0602
3 schema:author N72412cea5e314e06b063ff593cabdf32
4 schema:citation sg:pub.10.1007/978-981-15-0430-3
5 sg:pub.10.1007/s00521-015-1860-9
6 sg:pub.10.1007/s11538-015-0126-0
7 sg:pub.10.1007/s12190-019-01308-4
8 sg:pub.10.1007/s40808-016-0228-1
9 sg:pub.10.1186/s13662-018-1500-7
10 sg:pub.10.1186/s13662-021-03499-2
11 schema:datePublished 2022-04-15
12 schema:datePublishedReg 2022-04-15
13 schema:description Study of ecosystems has always been an interesting topic in the view of real-world dynamics. In this paper, we propose a fractional-order nonlinear mathematical model to describe the prelude of deteriorating quality of water cause of greenhouse gases on the population of aquatic animals. In the proposed system, we recall that greenhouse gases raise the temperature of water, and because of this reason, the dissolved oxygen level goes down, and also the rate of circulation of disintegrated oxygen by the aquatic animals rises, which causes a decrement in the density of aquatic species. We use a generalized form of the Caputo fractional derivative to describe the dynamics of the proposed problem. We also investigate equilibrium points of the given fractional-order model and discuss the asymptotic stability of the equilibria of the proposed autonomous model. We recall some important results to prove the existence of a unique solution of the model. For finding the numerical solution of the established fractional-order system, we apply a generalized predictor–corrector technique in the sense of proposed derivative and also justify the stability of the method. To express the novelty of the simulated results, we perform a number of graphs at various fractional-order cases. The given study is fully novel and useful for understanding the proposed real-world phenomena.
14 schema:genre article
15 schema:isAccessibleForFree true
16 schema:isPartOf Neb386003f9db49638f877ced298f7182
17 Nf282f60ae85340228220cb01184b7462
18 sg:journal.1421475
19 schema:keywords Caputo fractional derivative
20 animals
21 aquatic animals
22 aquatic species
23 asymptotic stability
24 autonomous model
25 cases
26 cause
27 circulation
28 decrement
29 density
30 derivatives
31 dynamics
32 ecosystems
33 effect
34 equilibrium
35 equilibrium point
36 existence
37 form
38 fractional derivative
39 fractional mathematical model
40 fractional order case
41 fractional-order model
42 fractional-order systems
43 gases
44 generalized form
45 graph
46 greenhouse gases
47 hypoxia
48 important results
49 interesting topic
50 levels
51 mathematical model
52 method
53 model
54 novelty
55 number
56 number of graphs
57 numerical solution
58 oxygen
59 oxygen levels
60 paper
61 phenomenon
62 point
63 population
64 predictor-corrector technique
65 prelude
66 problem
67 quality
68 rate
69 rate of circulation
70 real-world dynamics
71 real-world phenomena
72 reasons
73 results
74 sense
75 simulated results
76 solution
77 species
78 stability
79 study
80 study of ecosystems
81 system
82 technique
83 temperature
84 temperature of water
85 topic
86 unique solution
87 view
88 water
89 water causes
90 schema:name Effects of greenhouse gases and hypoxia on the population of aquatic species: a fractional mathematical model
91 schema:pagination 31
92 schema:productId N4ca61f0feff74072b328cd9eff2ba637
93 Nabafbb056b7b45d4844a128887f4fed7
94 Nb635afe5f1f244e7b4c5e6cff90c18da
95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1147152169
96 https://doi.org/10.1186/s13662-022-03679-8
97 schema:sdDatePublished 2022-08-04T17:10
98 schema:sdLicense https://scigraph.springernature.com/explorer/license/
99 schema:sdPublisher N286ab0cdd7414b43829e404d9e10daab
100 schema:url https://doi.org/10.1186/s13662-022-03679-8
101 sgo:license sg:explorer/license/
102 sgo:sdDataset articles
103 rdf:type schema:ScholarlyArticle
104 N286ab0cdd7414b43829e404d9e10daab schema:name Springer Nature - SN SciGraph project
105 rdf:type schema:Organization
106 N4ca61f0feff74072b328cd9eff2ba637 schema:name dimensions_id
107 schema:value pub.1147152169
108 rdf:type schema:PropertyValue
109 N72412cea5e314e06b063ff593cabdf32 rdf:first sg:person.016117641133.45
110 rdf:rest Nc7bd053c448f4ed49f2d429d1d6ff2ec
111 N7789c12bf3344243a1cca8a169ec56ad rdf:first sg:person.015527435207.27
112 rdf:rest rdf:nil
113 Nabafbb056b7b45d4844a128887f4fed7 schema:name pubmed_id
114 schema:value 35450200
115 rdf:type schema:PropertyValue
116 Nb635afe5f1f244e7b4c5e6cff90c18da schema:name doi
117 schema:value 10.1186/s13662-022-03679-8
118 rdf:type schema:PropertyValue
119 Nc7bd053c448f4ed49f2d429d1d6ff2ec rdf:first sg:person.014676775243.51
120 rdf:rest Nfd0e6545c7104787bd13ab8925d8763f
121 Neb386003f9db49638f877ced298f7182 schema:issueNumber 1
122 rdf:type schema:PublicationIssue
123 Nf282f60ae85340228220cb01184b7462 schema:volumeNumber 2022
124 rdf:type schema:PublicationVolume
125 Nfd0e6545c7104787bd13ab8925d8763f rdf:first sg:person.012412637437.53
126 rdf:rest N7789c12bf3344243a1cca8a169ec56ad
127 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
128 schema:name Biological Sciences
129 rdf:type schema:DefinedTerm
130 anzsrc-for:0602 schema:inDefinedTermSet anzsrc-for:
131 schema:name Ecology
132 rdf:type schema:DefinedTerm
133 sg:journal.1421475 schema:issn 2731-4235
134 schema:name Advances in Continuous and Discrete Models
135 schema:publisher Springer Nature
136 rdf:type schema:Periodical
137 sg:person.012412637437.53 schema:affiliation grid-institutes:grid.411049.9
138 schema:familyName Erturk
139 schema:givenName Vedat Suat
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012412637437.53
141 rdf:type schema:Person
142 sg:person.014676775243.51 schema:affiliation grid-institutes:None
143 schema:familyName Govindaraj
144 schema:givenName V.
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014676775243.51
146 rdf:type schema:Person
147 sg:person.015527435207.27 schema:affiliation grid-institutes:grid.412895.3
148 schema:familyName Mohamed
149 schema:givenName Mohamed S.
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015527435207.27
151 rdf:type schema:Person
152 sg:person.016117641133.45 schema:affiliation grid-institutes:None
153 schema:familyName Kumar
154 schema:givenName Pushpendra
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016117641133.45
156 rdf:type schema:Person
157 sg:pub.10.1007/978-981-15-0430-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1122851878
158 https://doi.org/10.1007/978-981-15-0430-3
159 rdf:type schema:CreativeWork
160 sg:pub.10.1007/s00521-015-1860-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023949238
161 https://doi.org/10.1007/s00521-015-1860-9
162 rdf:type schema:CreativeWork
163 sg:pub.10.1007/s11538-015-0126-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022339161
164 https://doi.org/10.1007/s11538-015-0126-0
165 rdf:type schema:CreativeWork
166 sg:pub.10.1007/s12190-019-01308-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1123312942
167 https://doi.org/10.1007/s12190-019-01308-4
168 rdf:type schema:CreativeWork
169 sg:pub.10.1007/s40808-016-0228-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017651572
170 https://doi.org/10.1007/s40808-016-0228-1
171 rdf:type schema:CreativeWork
172 sg:pub.10.1186/s13662-018-1500-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101066835
173 https://doi.org/10.1186/s13662-018-1500-7
174 rdf:type schema:CreativeWork
175 sg:pub.10.1186/s13662-021-03499-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1139793369
176 https://doi.org/10.1186/s13662-021-03499-2
177 rdf:type schema:CreativeWork
178 grid-institutes:None schema:alternateName Department of Mathematics, National Institute of Technology Puducherry, 609609, Karaikal, India
179 schema:name Department of Mathematics, National Institute of Technology Puducherry, 609609, Karaikal, India
180 rdf:type schema:Organization
181 grid-institutes:grid.411049.9 schema:alternateName Department of Mathematics, Faculty of Arts and Sciences, Ondokuz Mayis University, 55200, Atakum, Samsun, Turkey
182 schema:name Department of Mathematics, Faculty of Arts and Sciences, Ondokuz Mayis University, 55200, Atakum, Samsun, Turkey
183 rdf:type schema:Organization
184 grid-institutes:grid.412895.3 schema:alternateName Department of Mathematics and Statistics, College of Science, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
185 schema:name Department of Mathematics and Statistics, College of Science, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
186 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...