Effects of greenhouse gases and hypoxia on the population of aquatic species: a fractional mathematical model View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-04-15

AUTHORS

Pushpendra Kumar, V. Govindaraj, Vedat Suat Erturk, Mohamed S. Mohamed

ABSTRACT

Study of ecosystems has always been an interesting topic in the view of real-world dynamics. In this paper, we propose a fractional-order nonlinear mathematical model to describe the prelude of deteriorating quality of water cause of greenhouse gases on the population of aquatic animals. In the proposed system, we recall that greenhouse gases raise the temperature of water, and because of this reason, the dissolved oxygen level goes down, and also the rate of circulation of disintegrated oxygen by the aquatic animals rises, which causes a decrement in the density of aquatic species. We use a generalized form of the Caputo fractional derivative to describe the dynamics of the proposed problem. We also investigate equilibrium points of the given fractional-order model and discuss the asymptotic stability of the equilibria of the proposed autonomous model. We recall some important results to prove the existence of a unique solution of the model. For finding the numerical solution of the established fractional-order system, we apply a generalized predictor–corrector technique in the sense of proposed derivative and also justify the stability of the method. To express the novelty of the simulated results, we perform a number of graphs at various fractional-order cases. The given study is fully novel and useful for understanding the proposed real-world phenomena. More... »

PAGES

31

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13662-022-03679-8

DOI

http://dx.doi.org/10.1186/s13662-022-03679-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1147152169

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/35450200


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, National Institute of Technology Puducherry, 609609, Karaikal, India", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Mathematics, National Institute of Technology Puducherry, 609609, Karaikal, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kumar", 
        "givenName": "Pushpendra", 
        "id": "sg:person.016117641133.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016117641133.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, National Institute of Technology Puducherry, 609609, Karaikal, India", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Mathematics, National Institute of Technology Puducherry, 609609, Karaikal, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Govindaraj", 
        "givenName": "V.", 
        "id": "sg:person.014676775243.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014676775243.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Faculty of Arts and Sciences, Ondokuz Mayis University, 55200, Atakum, Samsun, Turkey", 
          "id": "http://www.grid.ac/institutes/grid.411049.9", 
          "name": [
            "Department of Mathematics, Faculty of Arts and Sciences, Ondokuz Mayis University, 55200, Atakum, Samsun, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Erturk", 
        "givenName": "Vedat Suat", 
        "id": "sg:person.012412637437.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012412637437.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics and Statistics, College of Science, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia", 
          "id": "http://www.grid.ac/institutes/grid.412895.3", 
          "name": [
            "Department of Mathematics and Statistics, College of Science, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mohamed", 
        "givenName": "Mohamed S.", 
        "id": "sg:person.015527435207.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015527435207.27"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/s13662-021-03499-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1139793369", 
          "https://doi.org/10.1186/s13662-021-03499-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11538-015-0126-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022339161", 
          "https://doi.org/10.1007/s11538-015-0126-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13662-018-1500-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101066835", 
          "https://doi.org/10.1186/s13662-018-1500-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12190-019-01308-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1123312942", 
          "https://doi.org/10.1007/s12190-019-01308-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-981-15-0430-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1122851878", 
          "https://doi.org/10.1007/978-981-15-0430-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40808-016-0228-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017651572", 
          "https://doi.org/10.1007/s40808-016-0228-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-015-1860-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023949238", 
          "https://doi.org/10.1007/s00521-015-1860-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-04-15", 
    "datePublishedReg": "2022-04-15", 
    "description": "Study of ecosystems has always been an interesting topic in the view of real-world dynamics. In this paper, we propose a fractional-order nonlinear mathematical model to describe the prelude of deteriorating quality of water cause of greenhouse gases on the population of aquatic animals. In the proposed system, we recall that greenhouse gases raise the temperature of water, and because of this reason, the dissolved oxygen level goes down, and also the rate of circulation of disintegrated oxygen by the aquatic animals rises, which causes a decrement in the density of aquatic species. We use a generalized form of the Caputo fractional derivative to describe the dynamics of the proposed problem. We also investigate equilibrium points of the given fractional-order model and discuss the asymptotic stability of the equilibria of the proposed autonomous model. We recall some important results to prove the existence of a unique solution of the model. For finding the numerical solution of the established fractional-order system, we apply a generalized predictor\u2013corrector technique in the sense of proposed derivative and also justify the stability of the method. To express the novelty of the simulated results, we perform a number of graphs at various fractional-order cases. The given study is fully novel and useful for understanding the proposed real-world phenomena.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s13662-022-03679-8", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1052613", 
        "issn": [
          "1687-1839", 
          "2731-4235"
        ], 
        "name": "Advances in Continuous and Discrete Models", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2022"
      }
    ], 
    "keywords": [
      "mathematical model", 
      "fractional mathematical model", 
      "Caputo fractional derivative", 
      "fractional-order systems", 
      "fractional order case", 
      "predictor-corrector technique", 
      "number of graphs", 
      "fractional-order model", 
      "real-world phenomena", 
      "fractional derivative", 
      "asymptotic stability", 
      "numerical solution", 
      "equilibrium point", 
      "unique solution", 
      "real-world dynamics", 
      "generalized form", 
      "autonomous model", 
      "important results", 
      "dynamics", 
      "solution", 
      "interesting topic", 
      "model", 
      "graph", 
      "simulated results", 
      "study of ecosystems", 
      "existence", 
      "problem", 
      "system", 
      "stability", 
      "equilibrium", 
      "derivatives", 
      "rate of circulation", 
      "point", 
      "phenomenon", 
      "novelty", 
      "results", 
      "sense", 
      "density", 
      "technique", 
      "number", 
      "gases", 
      "form", 
      "cases", 
      "temperature", 
      "temperature of water", 
      "topic", 
      "water causes", 
      "view", 
      "effect", 
      "study", 
      "quality", 
      "prelude", 
      "reasons", 
      "rate", 
      "circulation", 
      "decrement", 
      "population", 
      "levels", 
      "greenhouse gases", 
      "oxygen", 
      "water", 
      "species", 
      "aquatic animals", 
      "aquatic species", 
      "ecosystems", 
      "cause", 
      "oxygen levels", 
      "animals", 
      "paper", 
      "method", 
      "hypoxia"
    ], 
    "name": "Effects of greenhouse gases and hypoxia on the population of aquatic species: a fractional mathematical model", 
    "pagination": "31", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1147152169"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13662-022-03679-8"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "35450200"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13662-022-03679-8", 
      "https://app.dimensions.ai/details/publication/pub.1147152169"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_942.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s13662-022-03679-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13662-022-03679-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13662-022-03679-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13662-022-03679-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13662-022-03679-8'


 

This table displays all metadata directly associated to this object as RDF triples.

187 TRIPLES      21 PREDICATES      103 URIs      88 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13662-022-03679-8 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nb9356c18ae114b7588e1a208cc0c767f
4 schema:citation sg:pub.10.1007/978-981-15-0430-3
5 sg:pub.10.1007/s00521-015-1860-9
6 sg:pub.10.1007/s11538-015-0126-0
7 sg:pub.10.1007/s12190-019-01308-4
8 sg:pub.10.1007/s40808-016-0228-1
9 sg:pub.10.1186/s13662-018-1500-7
10 sg:pub.10.1186/s13662-021-03499-2
11 schema:datePublished 2022-04-15
12 schema:datePublishedReg 2022-04-15
13 schema:description Study of ecosystems has always been an interesting topic in the view of real-world dynamics. In this paper, we propose a fractional-order nonlinear mathematical model to describe the prelude of deteriorating quality of water cause of greenhouse gases on the population of aquatic animals. In the proposed system, we recall that greenhouse gases raise the temperature of water, and because of this reason, the dissolved oxygen level goes down, and also the rate of circulation of disintegrated oxygen by the aquatic animals rises, which causes a decrement in the density of aquatic species. We use a generalized form of the Caputo fractional derivative to describe the dynamics of the proposed problem. We also investigate equilibrium points of the given fractional-order model and discuss the asymptotic stability of the equilibria of the proposed autonomous model. We recall some important results to prove the existence of a unique solution of the model. For finding the numerical solution of the established fractional-order system, we apply a generalized predictor–corrector technique in the sense of proposed derivative and also justify the stability of the method. To express the novelty of the simulated results, we perform a number of graphs at various fractional-order cases. The given study is fully novel and useful for understanding the proposed real-world phenomena.
14 schema:genre article
15 schema:isAccessibleForFree true
16 schema:isPartOf N7eb2f1752d8a420fac7e84bce0036e05
17 N927bf9f8c201400783c8d3cdb2733687
18 sg:journal.1052613
19 schema:keywords Caputo fractional derivative
20 animals
21 aquatic animals
22 aquatic species
23 asymptotic stability
24 autonomous model
25 cases
26 cause
27 circulation
28 decrement
29 density
30 derivatives
31 dynamics
32 ecosystems
33 effect
34 equilibrium
35 equilibrium point
36 existence
37 form
38 fractional derivative
39 fractional mathematical model
40 fractional order case
41 fractional-order model
42 fractional-order systems
43 gases
44 generalized form
45 graph
46 greenhouse gases
47 hypoxia
48 important results
49 interesting topic
50 levels
51 mathematical model
52 method
53 model
54 novelty
55 number
56 number of graphs
57 numerical solution
58 oxygen
59 oxygen levels
60 paper
61 phenomenon
62 point
63 population
64 predictor-corrector technique
65 prelude
66 problem
67 quality
68 rate
69 rate of circulation
70 real-world dynamics
71 real-world phenomena
72 reasons
73 results
74 sense
75 simulated results
76 solution
77 species
78 stability
79 study
80 study of ecosystems
81 system
82 technique
83 temperature
84 temperature of water
85 topic
86 unique solution
87 view
88 water
89 water causes
90 schema:name Effects of greenhouse gases and hypoxia on the population of aquatic species: a fractional mathematical model
91 schema:pagination 31
92 schema:productId N1db202bb79364d07b2b104108814d910
93 N99eff783e587441aac759f7da074005a
94 Nd63a9992a65c45c4875c6396ea12784a
95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1147152169
96 https://doi.org/10.1186/s13662-022-03679-8
97 schema:sdDatePublished 2022-10-01T06:50
98 schema:sdLicense https://scigraph.springernature.com/explorer/license/
99 schema:sdPublisher N7ec08897c0f045bc97b9063b609f5ec9
100 schema:url https://doi.org/10.1186/s13662-022-03679-8
101 sgo:license sg:explorer/license/
102 sgo:sdDataset articles
103 rdf:type schema:ScholarlyArticle
104 N1db202bb79364d07b2b104108814d910 schema:name pubmed_id
105 schema:value 35450200
106 rdf:type schema:PropertyValue
107 N3132f59ae1db4404bd93ee3c06757595 rdf:first sg:person.014676775243.51
108 rdf:rest N7fd8f3f0e3884ac2a71a68fbba886110
109 N752d2556429f44fba89f8492ae606cef rdf:first sg:person.015527435207.27
110 rdf:rest rdf:nil
111 N7eb2f1752d8a420fac7e84bce0036e05 schema:volumeNumber 2022
112 rdf:type schema:PublicationVolume
113 N7ec08897c0f045bc97b9063b609f5ec9 schema:name Springer Nature - SN SciGraph project
114 rdf:type schema:Organization
115 N7fd8f3f0e3884ac2a71a68fbba886110 rdf:first sg:person.012412637437.53
116 rdf:rest N752d2556429f44fba89f8492ae606cef
117 N927bf9f8c201400783c8d3cdb2733687 schema:issueNumber 1
118 rdf:type schema:PublicationIssue
119 N99eff783e587441aac759f7da074005a schema:name dimensions_id
120 schema:value pub.1147152169
121 rdf:type schema:PropertyValue
122 Nb9356c18ae114b7588e1a208cc0c767f rdf:first sg:person.016117641133.45
123 rdf:rest N3132f59ae1db4404bd93ee3c06757595
124 Nd63a9992a65c45c4875c6396ea12784a schema:name doi
125 schema:value 10.1186/s13662-022-03679-8
126 rdf:type schema:PropertyValue
127 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
128 schema:name Mathematical Sciences
129 rdf:type schema:DefinedTerm
130 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
131 schema:name Pure Mathematics
132 rdf:type schema:DefinedTerm
133 sg:journal.1052613 schema:issn 1687-1839
134 2731-4235
135 schema:name Advances in Continuous and Discrete Models
136 schema:publisher Springer Nature
137 rdf:type schema:Periodical
138 sg:person.012412637437.53 schema:affiliation grid-institutes:grid.411049.9
139 schema:familyName Erturk
140 schema:givenName Vedat Suat
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012412637437.53
142 rdf:type schema:Person
143 sg:person.014676775243.51 schema:affiliation grid-institutes:None
144 schema:familyName Govindaraj
145 schema:givenName V.
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014676775243.51
147 rdf:type schema:Person
148 sg:person.015527435207.27 schema:affiliation grid-institutes:grid.412895.3
149 schema:familyName Mohamed
150 schema:givenName Mohamed S.
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015527435207.27
152 rdf:type schema:Person
153 sg:person.016117641133.45 schema:affiliation grid-institutes:None
154 schema:familyName Kumar
155 schema:givenName Pushpendra
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016117641133.45
157 rdf:type schema:Person
158 sg:pub.10.1007/978-981-15-0430-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1122851878
159 https://doi.org/10.1007/978-981-15-0430-3
160 rdf:type schema:CreativeWork
161 sg:pub.10.1007/s00521-015-1860-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023949238
162 https://doi.org/10.1007/s00521-015-1860-9
163 rdf:type schema:CreativeWork
164 sg:pub.10.1007/s11538-015-0126-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022339161
165 https://doi.org/10.1007/s11538-015-0126-0
166 rdf:type schema:CreativeWork
167 sg:pub.10.1007/s12190-019-01308-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1123312942
168 https://doi.org/10.1007/s12190-019-01308-4
169 rdf:type schema:CreativeWork
170 sg:pub.10.1007/s40808-016-0228-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017651572
171 https://doi.org/10.1007/s40808-016-0228-1
172 rdf:type schema:CreativeWork
173 sg:pub.10.1186/s13662-018-1500-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101066835
174 https://doi.org/10.1186/s13662-018-1500-7
175 rdf:type schema:CreativeWork
176 sg:pub.10.1186/s13662-021-03499-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1139793369
177 https://doi.org/10.1186/s13662-021-03499-2
178 rdf:type schema:CreativeWork
179 grid-institutes:None schema:alternateName Department of Mathematics, National Institute of Technology Puducherry, 609609, Karaikal, India
180 schema:name Department of Mathematics, National Institute of Technology Puducherry, 609609, Karaikal, India
181 rdf:type schema:Organization
182 grid-institutes:grid.411049.9 schema:alternateName Department of Mathematics, Faculty of Arts and Sciences, Ondokuz Mayis University, 55200, Atakum, Samsun, Turkey
183 schema:name Department of Mathematics, Faculty of Arts and Sciences, Ondokuz Mayis University, 55200, Atakum, Samsun, Turkey
184 rdf:type schema:Organization
185 grid-institutes:grid.412895.3 schema:alternateName Department of Mathematics and Statistics, College of Science, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
186 schema:name Department of Mathematics and Statistics, College of Science, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
187 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...