New version of fractional Simpson type inequalities for twice differentiable functions View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-10-18

AUTHORS

Fatih Hezenci, Hüseyin Budak, Hasan Kara

ABSTRACT

Simpson inequalities for differentiable convex functions and their fractional versions have been studied extensively. Simpson type inequalities for twice differentiable functions are also investigated. More precisely, Budak et al. established the first result on fractional Simpson inequality for twice differentiable functions. In the present article, we prove a new identity for twice differentiable functions. In addition to this, we establish several fractional Simpson type inequalities for functions whose second derivatives in absolute value are convex. This paper is a new version of fractional Simpson type inequalities for twice differentiable functions. More... »

PAGES

460

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13662-021-03615-2

DOI

http://dx.doi.org/10.1186/s13662-021-03615-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1141971522


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Faculty of Science and Arts, D\u00fczce University, D\u00fczce, Turkey", 
          "id": "http://www.grid.ac/institutes/grid.412121.5", 
          "name": [
            "Department of Mathematics, Faculty of Science and Arts, D\u00fczce University, D\u00fczce, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hezenci", 
        "givenName": "Fatih", 
        "id": "sg:person.016123733141.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016123733141.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Faculty of Science and Arts, D\u00fczce University, D\u00fczce, Turkey", 
          "id": "http://www.grid.ac/institutes/grid.412121.5", 
          "name": [
            "Department of Mathematics, Faculty of Science and Arts, D\u00fczce University, D\u00fczce, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Budak", 
        "givenName": "H\u00fcseyin", 
        "id": "sg:person.07356663407.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07356663407.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Faculty of Science and Arts, D\u00fczce University, D\u00fczce, Turkey", 
          "id": "http://www.grid.ac/institutes/grid.412121.5", 
          "name": [
            "Department of Mathematics, Faculty of Science and Arts, D\u00fczce University, D\u00fczce, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kara", 
        "givenName": "Hasan", 
        "id": "sg:person.011764036051.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011764036051.61"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/s13662-020-02955-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1130898718", 
          "https://doi.org/10.1186/s13662-020-02955-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1029-242x-2014-147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027097652", 
          "https://doi.org/10.1186/1029-242x-2014-147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40064-016-1683-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048483573", 
          "https://doi.org/10.1186/s40064-016-1683-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/j.joems.2015.05.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041795022", 
          "https://doi.org/10.1016/j.joems.2015.05.009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13660-017-1318-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084252630", 
          "https://doi.org/10.1186/s13660-017-1318-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13370-014-0242-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001146084", 
          "https://doi.org/10.1007/s13370-014-0242-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13398-019-00680-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1113877940", 
          "https://doi.org/10.1007/s13398-019-00680-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13662-021-03463-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1139178583", 
          "https://doi.org/10.1186/s13662-021-03463-0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-10-18", 
    "datePublishedReg": "2021-10-18", 
    "description": "Simpson inequalities for differentiable convex functions and their fractional versions have been studied extensively. Simpson type inequalities for twice differentiable functions are also investigated. More precisely, Budak et al. established the first result on fractional Simpson inequality for twice differentiable functions. In the present article, we prove a new identity for twice differentiable functions. In addition to this, we establish several fractional Simpson type inequalities for functions whose second derivatives in absolute value are convex. This paper is a new version of fractional Simpson type inequalities for twice differentiable functions.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s13662-021-03615-2", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1052613", 
        "issn": [
          "1687-1839", 
          "2731-4235"
        ], 
        "name": "Advances in Continuous and Discrete Models", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2021"
      }
    ], 
    "keywords": [
      "function", 
      "present article", 
      "addition", 
      "version", 
      "et al", 
      "results", 
      "article", 
      "derivatives", 
      "absolute value", 
      "values", 
      "inequality", 
      "type inequalities", 
      "first results", 
      "identity", 
      "new version", 
      "differentiable convex functions", 
      "al", 
      "new identity", 
      "paper", 
      "convex functions", 
      "Simpson type inequalities", 
      "differentiable functions", 
      "second derivative", 
      "Simpson\u2019s inequality", 
      "fractional version"
    ], 
    "name": "New version of fractional Simpson type inequalities for twice differentiable functions", 
    "pagination": "460", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1141971522"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13662-021-03615-2"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13662-021-03615-2", 
      "https://app.dimensions.ai/details/publication/pub.1141971522"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:43", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_911.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s13662-021-03615-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13662-021-03615-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13662-021-03615-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13662-021-03615-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13662-021-03615-2'


 

This table displays all metadata directly associated to this object as RDF triples.

128 TRIPLES      21 PREDICATES      56 URIs      40 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13662-021-03615-2 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N7b52adf5bda6454da0ea9e934e350bdb
4 schema:citation sg:pub.10.1007/s13370-014-0242-2
5 sg:pub.10.1007/s13398-019-00680-x
6 sg:pub.10.1016/j.joems.2015.05.009
7 sg:pub.10.1186/1029-242x-2014-147
8 sg:pub.10.1186/s13660-017-1318-y
9 sg:pub.10.1186/s13662-020-02955-9
10 sg:pub.10.1186/s13662-021-03463-0
11 sg:pub.10.1186/s40064-016-1683-x
12 schema:datePublished 2021-10-18
13 schema:datePublishedReg 2021-10-18
14 schema:description Simpson inequalities for differentiable convex functions and their fractional versions have been studied extensively. Simpson type inequalities for twice differentiable functions are also investigated. More precisely, Budak et al. established the first result on fractional Simpson inequality for twice differentiable functions. In the present article, we prove a new identity for twice differentiable functions. In addition to this, we establish several fractional Simpson type inequalities for functions whose second derivatives in absolute value are convex. This paper is a new version of fractional Simpson type inequalities for twice differentiable functions.
15 schema:genre article
16 schema:isAccessibleForFree true
17 schema:isPartOf N63b1be899b3c41c5a5b9ff9d3a4f0bf6
18 Nd6d39a8b6eb64ab686fe9abb27b66dd8
19 sg:journal.1052613
20 schema:keywords Simpson type inequalities
21 Simpson’s inequality
22 absolute value
23 addition
24 al
25 article
26 convex functions
27 derivatives
28 differentiable convex functions
29 differentiable functions
30 et al
31 first results
32 fractional version
33 function
34 identity
35 inequality
36 new identity
37 new version
38 paper
39 present article
40 results
41 second derivative
42 type inequalities
43 values
44 version
45 schema:name New version of fractional Simpson type inequalities for twice differentiable functions
46 schema:pagination 460
47 schema:productId N8ce67f205fdb46c4933c395a82d24b36
48 Nb7c0703920864371af8679fe2a59d9ba
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1141971522
50 https://doi.org/10.1186/s13662-021-03615-2
51 schema:sdDatePublished 2022-12-01T06:43
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher N17f3a7a9ba9942c6a2b2b0762108d0d5
54 schema:url https://doi.org/10.1186/s13662-021-03615-2
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N03c97cdfe33f407294afbb4434818511 rdf:first sg:person.011764036051.61
59 rdf:rest rdf:nil
60 N17f3a7a9ba9942c6a2b2b0762108d0d5 schema:name Springer Nature - SN SciGraph project
61 rdf:type schema:Organization
62 N63b1be899b3c41c5a5b9ff9d3a4f0bf6 schema:volumeNumber 2021
63 rdf:type schema:PublicationVolume
64 N7518cf522ba043088eb592dcae3c70b8 rdf:first sg:person.07356663407.38
65 rdf:rest N03c97cdfe33f407294afbb4434818511
66 N7b52adf5bda6454da0ea9e934e350bdb rdf:first sg:person.016123733141.25
67 rdf:rest N7518cf522ba043088eb592dcae3c70b8
68 N8ce67f205fdb46c4933c395a82d24b36 schema:name doi
69 schema:value 10.1186/s13662-021-03615-2
70 rdf:type schema:PropertyValue
71 Nb7c0703920864371af8679fe2a59d9ba schema:name dimensions_id
72 schema:value pub.1141971522
73 rdf:type schema:PropertyValue
74 Nd6d39a8b6eb64ab686fe9abb27b66dd8 schema:issueNumber 1
75 rdf:type schema:PublicationIssue
76 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
77 schema:name Mathematical Sciences
78 rdf:type schema:DefinedTerm
79 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
80 schema:name Pure Mathematics
81 rdf:type schema:DefinedTerm
82 sg:journal.1052613 schema:issn 1687-1839
83 2731-4235
84 schema:name Advances in Continuous and Discrete Models
85 schema:publisher Springer Nature
86 rdf:type schema:Periodical
87 sg:person.011764036051.61 schema:affiliation grid-institutes:grid.412121.5
88 schema:familyName Kara
89 schema:givenName Hasan
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011764036051.61
91 rdf:type schema:Person
92 sg:person.016123733141.25 schema:affiliation grid-institutes:grid.412121.5
93 schema:familyName Hezenci
94 schema:givenName Fatih
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016123733141.25
96 rdf:type schema:Person
97 sg:person.07356663407.38 schema:affiliation grid-institutes:grid.412121.5
98 schema:familyName Budak
99 schema:givenName Hüseyin
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07356663407.38
101 rdf:type schema:Person
102 sg:pub.10.1007/s13370-014-0242-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001146084
103 https://doi.org/10.1007/s13370-014-0242-2
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/s13398-019-00680-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1113877940
106 https://doi.org/10.1007/s13398-019-00680-x
107 rdf:type schema:CreativeWork
108 sg:pub.10.1016/j.joems.2015.05.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041795022
109 https://doi.org/10.1016/j.joems.2015.05.009
110 rdf:type schema:CreativeWork
111 sg:pub.10.1186/1029-242x-2014-147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027097652
112 https://doi.org/10.1186/1029-242x-2014-147
113 rdf:type schema:CreativeWork
114 sg:pub.10.1186/s13660-017-1318-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1084252630
115 https://doi.org/10.1186/s13660-017-1318-y
116 rdf:type schema:CreativeWork
117 sg:pub.10.1186/s13662-020-02955-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1130898718
118 https://doi.org/10.1186/s13662-020-02955-9
119 rdf:type schema:CreativeWork
120 sg:pub.10.1186/s13662-021-03463-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1139178583
121 https://doi.org/10.1186/s13662-021-03463-0
122 rdf:type schema:CreativeWork
123 sg:pub.10.1186/s40064-016-1683-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1048483573
124 https://doi.org/10.1186/s40064-016-1683-x
125 rdf:type schema:CreativeWork
126 grid-institutes:grid.412121.5 schema:alternateName Department of Mathematics, Faculty of Science and Arts, Düzce University, Düzce, Turkey
127 schema:name Department of Mathematics, Faculty of Science and Arts, Düzce University, Düzce, Turkey
128 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...