Global attractiveness and exponential stability for impulsive fractional neutral stochastic evolution equations driven by fBm View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2020-02-07

AUTHORS

Jiankang Liu, Wei Xu, Qin Guo

ABSTRACT

This paper is concerned with a class of fractional neutral stochastic integro-differential equations with impulses driven by fractional Brownian motion (fBm). First, by means of the resolvent operator technique and contraction mapping principle, we can directly show the existence and uniqueness result of mild solution for the aforementioned system. Then we develop a new impulsive-integral inequality to obtain the global attracting set and pth moment exponential stability for this type of equation. Worthy of note is that this powerful inequality after little modification is applicable to the case with delayed impulses. Moreover, sufficient conditions which guarantee the pth moment exponential stability for some pertinent systems are stated without proof. In the end, an example is worked out to illustrate the theoretical results. More... »

PAGES

63

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13662-020-2520-7

DOI

http://dx.doi.org/10.1186/s13662-020-2520-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1124664423


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Applied Science, Taiyuan University of Science and Technology, Taiyuan, China", 
          "id": "http://www.grid.ac/institutes/grid.440655.6", 
          "name": [
            "Department of Applied Mathematics, Northwestern Polytechnical University, Xi\u2019an, China", 
            "School of Applied Science, Taiyuan University of Science and Technology, Taiyuan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Jiankang", 
        "id": "sg:person.015617776015.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015617776015.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Applied Mathematics, Northwestern Polytechnical University, Xi\u2019an, China", 
          "id": "http://www.grid.ac/institutes/grid.440588.5", 
          "name": [
            "Department of Applied Mathematics, Northwestern Polytechnical University, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Wei", 
        "id": "sg:person.013422273504.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013422273504.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Applied Mathematics, Northwestern Polytechnical University, Xi\u2019an, China", 
          "id": "http://www.grid.ac/institutes/grid.440588.5", 
          "name": [
            "Department of Applied Mathematics, Northwestern Polytechnical University, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guo", 
        "givenName": "Qin", 
        "id": "sg:person.012531027746.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012531027746.93"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1687-1847-2013-206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046145584", 
          "https://doi.org/10.1186/1687-1847-2013-206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13662-017-1186-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085381185", 
          "https://doi.org/10.1186/s13662-017-1186-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-84628-797-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012085691", 
          "https://doi.org/10.1007/978-1-84628-797-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13662-017-1411-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092614130", 
          "https://doi.org/10.1186/s13662-017-1411-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1687-2770-2013-193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001401748", 
          "https://doi.org/10.1186/1687-2770-2013-193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11464-018-0728-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107723977", 
          "https://doi.org/10.1007/s11464-018-0728-6"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2020-02-07", 
    "datePublishedReg": "2020-02-07", 
    "description": "This paper is concerned with a class of fractional neutral stochastic integro-differential equations with impulses driven by fractional Brownian motion (fBm). First, by means of the resolvent operator technique and contraction mapping principle, we can directly show the existence and uniqueness result of mild solution for the aforementioned system. Then we develop a new impulsive-integral inequality to obtain the global attracting set and pth moment exponential stability for this type of equation. Worthy of note is that this powerful inequality after little modification is applicable to the case with delayed impulses. Moreover, sufficient conditions which guarantee the pth moment exponential stability for some pertinent systems are stated without proof. In the end, an example is worked out to illustrate the theoretical results.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s13662-020-2520-7", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8894995", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8123297", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1052613", 
        "issn": [
          "1687-1839", 
          "2731-4235"
        ], 
        "name": "Advances in Continuous and Discrete Models", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2020"
      }
    ], 
    "keywords": [
      "pth moment exponential stability", 
      "moment exponential stability", 
      "exponential stability", 
      "new impulsive-integral inequality", 
      "neutral stochastic evolution equations", 
      "stochastic integro-differential equations", 
      "stochastic evolution equations", 
      "integro-differential equations", 
      "types of equations", 
      "impulsive integral inequality", 
      "resolvent operator technique", 
      "contraction mapping principle", 
      "fractional Brownian motion", 
      "mild solutions", 
      "delayed impulses", 
      "evolution equations", 
      "uniqueness results", 
      "mapping principle", 
      "operator technique", 
      "sufficient conditions", 
      "Brownian motion", 
      "theoretical results", 
      "powerful inequalities", 
      "global attractiveness", 
      "equations", 
      "aforementioned systems", 
      "pertinent system", 
      "inequality", 
      "motion", 
      "little modification", 
      "stability", 
      "existence", 
      "solution", 
      "proof", 
      "class", 
      "system", 
      "set", 
      "impulses", 
      "principles", 
      "results", 
      "note", 
      "technique", 
      "means", 
      "cases", 
      "conditions", 
      "types", 
      "end", 
      "modification", 
      "attractiveness", 
      "example", 
      "paper"
    ], 
    "name": "Global attractiveness and exponential stability for impulsive fractional neutral stochastic evolution equations driven by fBm", 
    "pagination": "63", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1124664423"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13662-020-2520-7"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13662-020-2520-7", 
      "https://app.dimensions.ai/details/publication/pub.1124664423"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:48", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_874.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s13662-020-2520-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13662-020-2520-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13662-020-2520-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13662-020-2520-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13662-020-2520-7'


 

This table displays all metadata directly associated to this object as RDF triples.

154 TRIPLES      21 PREDICATES      81 URIs      67 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13662-020-2520-7 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author N3f815e23df934fc494b0e885da7ccb8a
4 schema:citation sg:pub.10.1007/978-1-84628-797-8
5 sg:pub.10.1007/s11464-018-0728-6
6 sg:pub.10.1186/1687-1847-2013-206
7 sg:pub.10.1186/1687-2770-2013-193
8 sg:pub.10.1186/s13662-017-1186-2
9 sg:pub.10.1186/s13662-017-1411-z
10 schema:datePublished 2020-02-07
11 schema:datePublishedReg 2020-02-07
12 schema:description This paper is concerned with a class of fractional neutral stochastic integro-differential equations with impulses driven by fractional Brownian motion (fBm). First, by means of the resolvent operator technique and contraction mapping principle, we can directly show the existence and uniqueness result of mild solution for the aforementioned system. Then we develop a new impulsive-integral inequality to obtain the global attracting set and pth moment exponential stability for this type of equation. Worthy of note is that this powerful inequality after little modification is applicable to the case with delayed impulses. Moreover, sufficient conditions which guarantee the pth moment exponential stability for some pertinent systems are stated without proof. In the end, an example is worked out to illustrate the theoretical results.
13 schema:genre article
14 schema:isAccessibleForFree true
15 schema:isPartOf Nbb67bd407d3145f7bc3e75b1c7ec5049
16 Nbcf1af3e57224a6cb479c9fe9206e7d6
17 sg:journal.1052613
18 schema:keywords Brownian motion
19 aforementioned systems
20 attractiveness
21 cases
22 class
23 conditions
24 contraction mapping principle
25 delayed impulses
26 end
27 equations
28 evolution equations
29 example
30 existence
31 exponential stability
32 fractional Brownian motion
33 global attractiveness
34 impulses
35 impulsive integral inequality
36 inequality
37 integro-differential equations
38 little modification
39 mapping principle
40 means
41 mild solutions
42 modification
43 moment exponential stability
44 motion
45 neutral stochastic evolution equations
46 new impulsive-integral inequality
47 note
48 operator technique
49 paper
50 pertinent system
51 powerful inequalities
52 principles
53 proof
54 pth moment exponential stability
55 resolvent operator technique
56 results
57 set
58 solution
59 stability
60 stochastic evolution equations
61 stochastic integro-differential equations
62 sufficient conditions
63 system
64 technique
65 theoretical results
66 types
67 types of equations
68 uniqueness results
69 schema:name Global attractiveness and exponential stability for impulsive fractional neutral stochastic evolution equations driven by fBm
70 schema:pagination 63
71 schema:productId N6adfaa0e37ec46cc9a4e9fdb2595428a
72 Nf9d4c89d728848dfb144667908f26473
73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124664423
74 https://doi.org/10.1186/s13662-020-2520-7
75 schema:sdDatePublished 2022-10-01T06:48
76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
77 schema:sdPublisher N84a9aab9306c450db4e7be118564b692
78 schema:url https://doi.org/10.1186/s13662-020-2520-7
79 sgo:license sg:explorer/license/
80 sgo:sdDataset articles
81 rdf:type schema:ScholarlyArticle
82 N3f815e23df934fc494b0e885da7ccb8a rdf:first sg:person.015617776015.59
83 rdf:rest Nfabb472c2a6c4bf395537b2c9ceb937e
84 N58cd31f4e56b4627b8b7a0559bdb6a49 rdf:first sg:person.012531027746.93
85 rdf:rest rdf:nil
86 N6adfaa0e37ec46cc9a4e9fdb2595428a schema:name dimensions_id
87 schema:value pub.1124664423
88 rdf:type schema:PropertyValue
89 N84a9aab9306c450db4e7be118564b692 schema:name Springer Nature - SN SciGraph project
90 rdf:type schema:Organization
91 Nbb67bd407d3145f7bc3e75b1c7ec5049 schema:volumeNumber 2020
92 rdf:type schema:PublicationVolume
93 Nbcf1af3e57224a6cb479c9fe9206e7d6 schema:issueNumber 1
94 rdf:type schema:PublicationIssue
95 Nf9d4c89d728848dfb144667908f26473 schema:name doi
96 schema:value 10.1186/s13662-020-2520-7
97 rdf:type schema:PropertyValue
98 Nfabb472c2a6c4bf395537b2c9ceb937e rdf:first sg:person.013422273504.85
99 rdf:rest N58cd31f4e56b4627b8b7a0559bdb6a49
100 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
101 schema:name Mathematical Sciences
102 rdf:type schema:DefinedTerm
103 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
104 schema:name Applied Mathematics
105 rdf:type schema:DefinedTerm
106 sg:grant.8123297 http://pending.schema.org/fundedItem sg:pub.10.1186/s13662-020-2520-7
107 rdf:type schema:MonetaryGrant
108 sg:grant.8894995 http://pending.schema.org/fundedItem sg:pub.10.1186/s13662-020-2520-7
109 rdf:type schema:MonetaryGrant
110 sg:journal.1052613 schema:issn 1687-1839
111 2731-4235
112 schema:name Advances in Continuous and Discrete Models
113 schema:publisher Springer Nature
114 rdf:type schema:Periodical
115 sg:person.012531027746.93 schema:affiliation grid-institutes:grid.440588.5
116 schema:familyName Guo
117 schema:givenName Qin
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012531027746.93
119 rdf:type schema:Person
120 sg:person.013422273504.85 schema:affiliation grid-institutes:grid.440588.5
121 schema:familyName Xu
122 schema:givenName Wei
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013422273504.85
124 rdf:type schema:Person
125 sg:person.015617776015.59 schema:affiliation grid-institutes:grid.440655.6
126 schema:familyName Liu
127 schema:givenName Jiankang
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015617776015.59
129 rdf:type schema:Person
130 sg:pub.10.1007/978-1-84628-797-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012085691
131 https://doi.org/10.1007/978-1-84628-797-8
132 rdf:type schema:CreativeWork
133 sg:pub.10.1007/s11464-018-0728-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107723977
134 https://doi.org/10.1007/s11464-018-0728-6
135 rdf:type schema:CreativeWork
136 sg:pub.10.1186/1687-1847-2013-206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046145584
137 https://doi.org/10.1186/1687-1847-2013-206
138 rdf:type schema:CreativeWork
139 sg:pub.10.1186/1687-2770-2013-193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001401748
140 https://doi.org/10.1186/1687-2770-2013-193
141 rdf:type schema:CreativeWork
142 sg:pub.10.1186/s13662-017-1186-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085381185
143 https://doi.org/10.1186/s13662-017-1186-2
144 rdf:type schema:CreativeWork
145 sg:pub.10.1186/s13662-017-1411-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1092614130
146 https://doi.org/10.1186/s13662-017-1411-z
147 rdf:type schema:CreativeWork
148 grid-institutes:grid.440588.5 schema:alternateName Department of Applied Mathematics, Northwestern Polytechnical University, Xi’an, China
149 schema:name Department of Applied Mathematics, Northwestern Polytechnical University, Xi’an, China
150 rdf:type schema:Organization
151 grid-institutes:grid.440655.6 schema:alternateName School of Applied Science, Taiyuan University of Science and Technology, Taiyuan, China
152 schema:name Department of Applied Mathematics, Northwestern Polytechnical University, Xi’an, China
153 School of Applied Science, Taiyuan University of Science and Technology, Taiyuan, China
154 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...