Global attractiveness and exponential stability for impulsive fractional neutral stochastic evolution equations driven by fBm View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2020-02-07

AUTHORS

Jiankang Liu, Wei Xu, Qin Guo

ABSTRACT

This paper is concerned with a class of fractional neutral stochastic integro-differential equations with impulses driven by fractional Brownian motion (fBm). First, by means of the resolvent operator technique and contraction mapping principle, we can directly show the existence and uniqueness result of mild solution for the aforementioned system. Then we develop a new impulsive-integral inequality to obtain the global attracting set and pth moment exponential stability for this type of equation. Worthy of note is that this powerful inequality after little modification is applicable to the case with delayed impulses. Moreover, sufficient conditions which guarantee the pth moment exponential stability for some pertinent systems are stated without proof. In the end, an example is worked out to illustrate the theoretical results. More... »

PAGES

63

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13662-020-2520-7

DOI

http://dx.doi.org/10.1186/s13662-020-2520-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1124664423


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Applied Science, Taiyuan University of Science and Technology, Taiyuan, China", 
          "id": "http://www.grid.ac/institutes/grid.440655.6", 
          "name": [
            "Department of Applied Mathematics, Northwestern Polytechnical University, Xi\u2019an, China", 
            "School of Applied Science, Taiyuan University of Science and Technology, Taiyuan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Jiankang", 
        "id": "sg:person.015617776015.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015617776015.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Applied Mathematics, Northwestern Polytechnical University, Xi\u2019an, China", 
          "id": "http://www.grid.ac/institutes/grid.440588.5", 
          "name": [
            "Department of Applied Mathematics, Northwestern Polytechnical University, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Wei", 
        "id": "sg:person.013422273504.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013422273504.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Applied Mathematics, Northwestern Polytechnical University, Xi\u2019an, China", 
          "id": "http://www.grid.ac/institutes/grid.440588.5", 
          "name": [
            "Department of Applied Mathematics, Northwestern Polytechnical University, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guo", 
        "givenName": "Qin", 
        "id": "sg:person.012531027746.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012531027746.93"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1687-1847-2013-206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046145584", 
          "https://doi.org/10.1186/1687-1847-2013-206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13662-017-1186-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085381185", 
          "https://doi.org/10.1186/s13662-017-1186-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-84628-797-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012085691", 
          "https://doi.org/10.1007/978-1-84628-797-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13662-017-1411-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092614130", 
          "https://doi.org/10.1186/s13662-017-1411-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1687-2770-2013-193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001401748", 
          "https://doi.org/10.1186/1687-2770-2013-193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11464-018-0728-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107723977", 
          "https://doi.org/10.1007/s11464-018-0728-6"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2020-02-07", 
    "datePublishedReg": "2020-02-07", 
    "description": "This paper is concerned with a class of fractional neutral stochastic integro-differential equations with impulses driven by fractional Brownian motion (fBm). First, by means of the resolvent operator technique and contraction mapping principle, we can directly show the existence and uniqueness result of mild solution for the aforementioned system. Then we develop a new impulsive-integral inequality to obtain the global attracting set and pth moment exponential stability for this type of equation. Worthy of note is that this powerful inequality after little modification is applicable to the case with delayed impulses. Moreover, sufficient conditions which guarantee the pth moment exponential stability for some pertinent systems are stated without proof. In the end, an example is worked out to illustrate the theoretical results.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s13662-020-2520-7", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8894995", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8123297", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1052613", 
        "issn": [
          "1687-1839", 
          "2731-4235"
        ], 
        "name": "Advances in Continuous and Discrete Models", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2020"
      }
    ], 
    "keywords": [
      "pth moment exponential stability", 
      "moment exponential stability", 
      "exponential stability", 
      "new impulsive-integral inequality", 
      "neutral stochastic evolution equations", 
      "stochastic integro-differential equations", 
      "stochastic evolution equations", 
      "integro-differential equations", 
      "types of equations", 
      "impulsive integral inequality", 
      "resolvent operator technique", 
      "contraction mapping principle", 
      "fractional Brownian motion", 
      "mild solutions", 
      "delayed impulses", 
      "evolution equations", 
      "uniqueness results", 
      "mapping principle", 
      "operator technique", 
      "sufficient conditions", 
      "Brownian motion", 
      "theoretical results", 
      "powerful inequalities", 
      "global attractiveness", 
      "equations", 
      "aforementioned systems", 
      "pertinent system", 
      "inequality", 
      "motion", 
      "little modification", 
      "stability", 
      "existence", 
      "solution", 
      "proof", 
      "class", 
      "system", 
      "set", 
      "impulses", 
      "principles", 
      "results", 
      "note", 
      "technique", 
      "means", 
      "cases", 
      "conditions", 
      "types", 
      "end", 
      "modification", 
      "attractiveness", 
      "example", 
      "paper"
    ], 
    "name": "Global attractiveness and exponential stability for impulsive fractional neutral stochastic evolution equations driven by fBm", 
    "pagination": "63", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1124664423"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13662-020-2520-7"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13662-020-2520-7", 
      "https://app.dimensions.ai/details/publication/pub.1124664423"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:48", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_874.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s13662-020-2520-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13662-020-2520-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13662-020-2520-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13662-020-2520-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13662-020-2520-7'


 

This table displays all metadata directly associated to this object as RDF triples.

154 TRIPLES      21 PREDICATES      81 URIs      67 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13662-020-2520-7 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author N8f71502db56b4c5097ff2965fcd5c742
4 schema:citation sg:pub.10.1007/978-1-84628-797-8
5 sg:pub.10.1007/s11464-018-0728-6
6 sg:pub.10.1186/1687-1847-2013-206
7 sg:pub.10.1186/1687-2770-2013-193
8 sg:pub.10.1186/s13662-017-1186-2
9 sg:pub.10.1186/s13662-017-1411-z
10 schema:datePublished 2020-02-07
11 schema:datePublishedReg 2020-02-07
12 schema:description This paper is concerned with a class of fractional neutral stochastic integro-differential equations with impulses driven by fractional Brownian motion (fBm). First, by means of the resolvent operator technique and contraction mapping principle, we can directly show the existence and uniqueness result of mild solution for the aforementioned system. Then we develop a new impulsive-integral inequality to obtain the global attracting set and pth moment exponential stability for this type of equation. Worthy of note is that this powerful inequality after little modification is applicable to the case with delayed impulses. Moreover, sufficient conditions which guarantee the pth moment exponential stability for some pertinent systems are stated without proof. In the end, an example is worked out to illustrate the theoretical results.
13 schema:genre article
14 schema:isAccessibleForFree true
15 schema:isPartOf N407f6df47d3d4958b10a9218c7ecb5c1
16 Nf6bfbe1eee104c4c81f840d903be06f3
17 sg:journal.1052613
18 schema:keywords Brownian motion
19 aforementioned systems
20 attractiveness
21 cases
22 class
23 conditions
24 contraction mapping principle
25 delayed impulses
26 end
27 equations
28 evolution equations
29 example
30 existence
31 exponential stability
32 fractional Brownian motion
33 global attractiveness
34 impulses
35 impulsive integral inequality
36 inequality
37 integro-differential equations
38 little modification
39 mapping principle
40 means
41 mild solutions
42 modification
43 moment exponential stability
44 motion
45 neutral stochastic evolution equations
46 new impulsive-integral inequality
47 note
48 operator technique
49 paper
50 pertinent system
51 powerful inequalities
52 principles
53 proof
54 pth moment exponential stability
55 resolvent operator technique
56 results
57 set
58 solution
59 stability
60 stochastic evolution equations
61 stochastic integro-differential equations
62 sufficient conditions
63 system
64 technique
65 theoretical results
66 types
67 types of equations
68 uniqueness results
69 schema:name Global attractiveness and exponential stability for impulsive fractional neutral stochastic evolution equations driven by fBm
70 schema:pagination 63
71 schema:productId N40782f1eb5314df6ab6279b9505e54db
72 Nf74b92ec6c764935b6c5d1494d9f78e4
73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124664423
74 https://doi.org/10.1186/s13662-020-2520-7
75 schema:sdDatePublished 2022-10-01T06:48
76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
77 schema:sdPublisher N7cebf6a2b94645cd8132c10d4479f8ff
78 schema:url https://doi.org/10.1186/s13662-020-2520-7
79 sgo:license sg:explorer/license/
80 sgo:sdDataset articles
81 rdf:type schema:ScholarlyArticle
82 N40782f1eb5314df6ab6279b9505e54db schema:name dimensions_id
83 schema:value pub.1124664423
84 rdf:type schema:PropertyValue
85 N407f6df47d3d4958b10a9218c7ecb5c1 schema:volumeNumber 2020
86 rdf:type schema:PublicationVolume
87 N4b4d8dd6e16a4145953ce1aa8a2d1d2e rdf:first sg:person.013422273504.85
88 rdf:rest N91f639076c41409b90f59c8ae1fbd886
89 N7cebf6a2b94645cd8132c10d4479f8ff schema:name Springer Nature - SN SciGraph project
90 rdf:type schema:Organization
91 N8f71502db56b4c5097ff2965fcd5c742 rdf:first sg:person.015617776015.59
92 rdf:rest N4b4d8dd6e16a4145953ce1aa8a2d1d2e
93 N91f639076c41409b90f59c8ae1fbd886 rdf:first sg:person.012531027746.93
94 rdf:rest rdf:nil
95 Nf6bfbe1eee104c4c81f840d903be06f3 schema:issueNumber 1
96 rdf:type schema:PublicationIssue
97 Nf74b92ec6c764935b6c5d1494d9f78e4 schema:name doi
98 schema:value 10.1186/s13662-020-2520-7
99 rdf:type schema:PropertyValue
100 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
101 schema:name Mathematical Sciences
102 rdf:type schema:DefinedTerm
103 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
104 schema:name Applied Mathematics
105 rdf:type schema:DefinedTerm
106 sg:grant.8123297 http://pending.schema.org/fundedItem sg:pub.10.1186/s13662-020-2520-7
107 rdf:type schema:MonetaryGrant
108 sg:grant.8894995 http://pending.schema.org/fundedItem sg:pub.10.1186/s13662-020-2520-7
109 rdf:type schema:MonetaryGrant
110 sg:journal.1052613 schema:issn 1687-1839
111 2731-4235
112 schema:name Advances in Continuous and Discrete Models
113 schema:publisher Springer Nature
114 rdf:type schema:Periodical
115 sg:person.012531027746.93 schema:affiliation grid-institutes:grid.440588.5
116 schema:familyName Guo
117 schema:givenName Qin
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012531027746.93
119 rdf:type schema:Person
120 sg:person.013422273504.85 schema:affiliation grid-institutes:grid.440588.5
121 schema:familyName Xu
122 schema:givenName Wei
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013422273504.85
124 rdf:type schema:Person
125 sg:person.015617776015.59 schema:affiliation grid-institutes:grid.440655.6
126 schema:familyName Liu
127 schema:givenName Jiankang
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015617776015.59
129 rdf:type schema:Person
130 sg:pub.10.1007/978-1-84628-797-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012085691
131 https://doi.org/10.1007/978-1-84628-797-8
132 rdf:type schema:CreativeWork
133 sg:pub.10.1007/s11464-018-0728-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107723977
134 https://doi.org/10.1007/s11464-018-0728-6
135 rdf:type schema:CreativeWork
136 sg:pub.10.1186/1687-1847-2013-206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046145584
137 https://doi.org/10.1186/1687-1847-2013-206
138 rdf:type schema:CreativeWork
139 sg:pub.10.1186/1687-2770-2013-193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001401748
140 https://doi.org/10.1186/1687-2770-2013-193
141 rdf:type schema:CreativeWork
142 sg:pub.10.1186/s13662-017-1186-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085381185
143 https://doi.org/10.1186/s13662-017-1186-2
144 rdf:type schema:CreativeWork
145 sg:pub.10.1186/s13662-017-1411-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1092614130
146 https://doi.org/10.1186/s13662-017-1411-z
147 rdf:type schema:CreativeWork
148 grid-institutes:grid.440588.5 schema:alternateName Department of Applied Mathematics, Northwestern Polytechnical University, Xi’an, China
149 schema:name Department of Applied Mathematics, Northwestern Polytechnical University, Xi’an, China
150 rdf:type schema:Organization
151 grid-institutes:grid.440655.6 schema:alternateName School of Applied Science, Taiyuan University of Science and Technology, Taiyuan, China
152 schema:name Department of Applied Mathematics, Northwestern Polytechnical University, Xi’an, China
153 School of Applied Science, Taiyuan University of Science and Technology, Taiyuan, China
154 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...