On some Hermite–Hadamard type inequalities for T-convex interval-valued functions View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2020-10-02

AUTHORS

Zehao Sha, Guoju Ye, Dafang Zhao, Wei Liu

ABSTRACT

In this paper, we introduce the concepts of map T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {T}$\end{document} and interval-valued T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {T}$\end{document}-convex, and give some basic properties. Further, we extend fractional Hermite–Hadamard inequalities in the case of T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {T}$\end{document}-convex and Ostrowski type inequalities for interval-valued functions. Several examples are presented to illustrate the results. More... »

PAGES

544

References to SciGraph publications

  • 2019-03-18. Gauss-type integral inequalities for interval and fuzzy-interval-valued functions in COMPUTATIONAL AND APPLIED MATHEMATICS
  • 2020-03-26. Generalized fractional integral inequalities of Hermite–Hadamard type for harmonically convex functions in ADVANCES IN CONTINUOUS AND DISCRETE MODELS
  • 2016-11-16. Some integral inequalities for interval-valued functions in COMPUTATIONAL AND APPLIED MATHEMATICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s13662-020-03004-1

    DOI

    http://dx.doi.org/10.1186/s13662-020-03004-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1131391538


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "College of Science, Hohai University, 210098, Nanjing, P.R. China", 
              "id": "http://www.grid.ac/institutes/grid.257065.3", 
              "name": [
                "College of Science, Hohai University, 210098, Nanjing, P.R. China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sha", 
            "givenName": "Zehao", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "College of Science, Hohai University, 210098, Nanjing, P.R. China", 
              "id": "http://www.grid.ac/institutes/grid.257065.3", 
              "name": [
                "College of Science, Hohai University, 210098, Nanjing, P.R. China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ye", 
            "givenName": "Guoju", 
            "id": "sg:person.016065243026.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016065243026.01"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Mathematics and Statistics, Hubei Normal University, 435002, Huangshi, P.R. China", 
              "id": "http://www.grid.ac/institutes/grid.462271.4", 
              "name": [
                "School of Mathematics and Statistics, Hubei Normal University, 435002, Huangshi, P.R. China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhao", 
            "givenName": "Dafang", 
            "id": "sg:person.012305220221.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012305220221.44"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "College of Science, Hohai University, 210098, Nanjing, P.R. China", 
              "id": "http://www.grid.ac/institutes/grid.257065.3", 
              "name": [
                "College of Science, Hohai University, 210098, Nanjing, P.R. China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Wei", 
            "id": "sg:person.010465776266.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010465776266.28"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1186/s13662-020-02589-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1125929256", 
              "https://doi.org/10.1186/s13662-020-02589-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40314-016-0396-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023223445", 
              "https://doi.org/10.1007/s40314-016-0396-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40314-019-0836-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112856448", 
              "https://doi.org/10.1007/s40314-019-0836-2"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2020-10-02", 
        "datePublishedReg": "2020-10-02", 
        "description": "In this paper, we introduce the concepts of map T\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\mathcal {T}$\\end{document} and interval-valued T\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\mathcal {T}$\\end{document}-convex, and give some basic properties. Further, we extend fractional Hermite\u2013Hadamard inequalities in the case of T\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\mathcal {T}$\\end{document}-convex and Ostrowski type inequalities for interval-valued functions. Several examples are presented to illustrate the results.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s13662-020-03004-1", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1052613", 
            "issn": [
              "1687-1839", 
              "2731-4235"
            ], 
            "name": "Advances in Continuous and Discrete Models", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2020"
          }
        ], 
        "keywords": [
          "function", 
          "cases", 
          "Hermite-Hadamard type inequalities", 
          "results", 
          "inequality", 
          "type inequalities", 
          "Hermite\u2013Hadamard inequality", 
          "concept", 
          "properties", 
          "maps", 
          "example", 
          "convex", 
          "basic properties", 
          "Ostrowski type inequalities", 
          "paper", 
          "interval-valued functions", 
          "concept of maps"
        ], 
        "name": "On some Hermite\u2013Hadamard type inequalities for T-convex interval-valued functions", 
        "pagination": "544", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1131391538"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s13662-020-03004-1"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s13662-020-03004-1", 
          "https://app.dimensions.ai/details/publication/pub.1131391538"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-11-24T21:07", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_868.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s13662-020-03004-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13662-020-03004-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13662-020-03004-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13662-020-03004-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13662-020-03004-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    109 TRIPLES      21 PREDICATES      44 URIs      33 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s13662-020-03004-1 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Nea119ae433b842de96e870374c53a1bf
    4 schema:citation sg:pub.10.1007/s40314-016-0396-7
    5 sg:pub.10.1007/s40314-019-0836-2
    6 sg:pub.10.1186/s13662-020-02589-x
    7 schema:datePublished 2020-10-02
    8 schema:datePublishedReg 2020-10-02
    9 schema:description In this paper, we introduce the concepts of map T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {T}$\end{document} and interval-valued T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {T}$\end{document}-convex, and give some basic properties. Further, we extend fractional Hermite–Hadamard inequalities in the case of T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {T}$\end{document}-convex and Ostrowski type inequalities for interval-valued functions. Several examples are presented to illustrate the results.
    10 schema:genre article
    11 schema:isAccessibleForFree true
    12 schema:isPartOf N831b9e5d8e884f6db4cd409c67f601a1
    13 Nb6aa71e627004d77828f9996d7527d73
    14 sg:journal.1052613
    15 schema:keywords Hermite-Hadamard type inequalities
    16 Hermite–Hadamard inequality
    17 Ostrowski type inequalities
    18 basic properties
    19 cases
    20 concept
    21 concept of maps
    22 convex
    23 example
    24 function
    25 inequality
    26 interval-valued functions
    27 maps
    28 paper
    29 properties
    30 results
    31 type inequalities
    32 schema:name On some Hermite–Hadamard type inequalities for T-convex interval-valued functions
    33 schema:pagination 544
    34 schema:productId Nd58d94c924904d57bf98c9370523557a
    35 Nefe6957c3f4f4d2298f5d28bbfdd26f2
    36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1131391538
    37 https://doi.org/10.1186/s13662-020-03004-1
    38 schema:sdDatePublished 2022-11-24T21:07
    39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    40 schema:sdPublisher N08eadae00aa14670b31e6e565a272e0b
    41 schema:url https://doi.org/10.1186/s13662-020-03004-1
    42 sgo:license sg:explorer/license/
    43 sgo:sdDataset articles
    44 rdf:type schema:ScholarlyArticle
    45 N08eadae00aa14670b31e6e565a272e0b schema:name Springer Nature - SN SciGraph project
    46 rdf:type schema:Organization
    47 N34d3838527484343a22308639615418d schema:affiliation grid-institutes:grid.257065.3
    48 schema:familyName Sha
    49 schema:givenName Zehao
    50 rdf:type schema:Person
    51 N48e935d6a64d40db88e38466f51ca3ef rdf:first sg:person.010465776266.28
    52 rdf:rest rdf:nil
    53 N4ad7362c291f40d2bab0c4ea95d7a54d rdf:first sg:person.012305220221.44
    54 rdf:rest N48e935d6a64d40db88e38466f51ca3ef
    55 N52a744a829d94512919d224076c9627e rdf:first sg:person.016065243026.01
    56 rdf:rest N4ad7362c291f40d2bab0c4ea95d7a54d
    57 N831b9e5d8e884f6db4cd409c67f601a1 schema:issueNumber 1
    58 rdf:type schema:PublicationIssue
    59 Nb6aa71e627004d77828f9996d7527d73 schema:volumeNumber 2020
    60 rdf:type schema:PublicationVolume
    61 Nd58d94c924904d57bf98c9370523557a schema:name dimensions_id
    62 schema:value pub.1131391538
    63 rdf:type schema:PropertyValue
    64 Nea119ae433b842de96e870374c53a1bf rdf:first N34d3838527484343a22308639615418d
    65 rdf:rest N52a744a829d94512919d224076c9627e
    66 Nefe6957c3f4f4d2298f5d28bbfdd26f2 schema:name doi
    67 schema:value 10.1186/s13662-020-03004-1
    68 rdf:type schema:PropertyValue
    69 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    70 schema:name Mathematical Sciences
    71 rdf:type schema:DefinedTerm
    72 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    73 schema:name Pure Mathematics
    74 rdf:type schema:DefinedTerm
    75 sg:journal.1052613 schema:issn 1687-1839
    76 2731-4235
    77 schema:name Advances in Continuous and Discrete Models
    78 schema:publisher Springer Nature
    79 rdf:type schema:Periodical
    80 sg:person.010465776266.28 schema:affiliation grid-institutes:grid.257065.3
    81 schema:familyName Liu
    82 schema:givenName Wei
    83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010465776266.28
    84 rdf:type schema:Person
    85 sg:person.012305220221.44 schema:affiliation grid-institutes:grid.462271.4
    86 schema:familyName Zhao
    87 schema:givenName Dafang
    88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012305220221.44
    89 rdf:type schema:Person
    90 sg:person.016065243026.01 schema:affiliation grid-institutes:grid.257065.3
    91 schema:familyName Ye
    92 schema:givenName Guoju
    93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016065243026.01
    94 rdf:type schema:Person
    95 sg:pub.10.1007/s40314-016-0396-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023223445
    96 https://doi.org/10.1007/s40314-016-0396-7
    97 rdf:type schema:CreativeWork
    98 sg:pub.10.1007/s40314-019-0836-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112856448
    99 https://doi.org/10.1007/s40314-019-0836-2
    100 rdf:type schema:CreativeWork
    101 sg:pub.10.1186/s13662-020-02589-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1125929256
    102 https://doi.org/10.1186/s13662-020-02589-x
    103 rdf:type schema:CreativeWork
    104 grid-institutes:grid.257065.3 schema:alternateName College of Science, Hohai University, 210098, Nanjing, P.R. China
    105 schema:name College of Science, Hohai University, 210098, Nanjing, P.R. China
    106 rdf:type schema:Organization
    107 grid-institutes:grid.462271.4 schema:alternateName School of Mathematics and Statistics, Hubei Normal University, 435002, Huangshi, P.R. China
    108 schema:name School of Mathematics and Statistics, Hubei Normal University, 435002, Huangshi, P.R. China
    109 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...