Dynamics of a fractional order mathematical model for COVID-19 epidemic View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2020-08-14

AUTHORS

Zizhen Zhang, Anwar Zeb, Oluwaseun Francis Egbelowo, Vedat Suat Erturk

ABSTRACT

In this work, we formulate and analyze a new mathematical model for COVID-19 epidemic with isolated class in fractional order. This model is described by a system of fractional-order differential equations model and includes five classes, namely, S (susceptible class), E (exposed class), I (infected class), Q (isolated class), and R (recovered class). Dynamics and numerical approximations for the proposed fractional-order model are studied. Firstly, positivity and boundedness of the model are established. Secondly, the basic reproduction number of the model is calculated by using the next generation matrix approach. Then, asymptotic stability of the model is investigated. Lastly, we apply the adaptive predictor–corrector algorithm and fourth-order Runge–Kutta (RK4) method to simulate the proposed model. Consequently, a set of numerical simulations are performed to support the validity of the theoretical results. The numerical simulations indicate that there is a good agreement between theoretical results and numerical ones. More... »

PAGES

420

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13662-020-02873-w

DOI

http://dx.doi.org/10.1186/s13662-020-02873-w

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1130115002

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/32834820


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Management Science and Engineering, Anhui University of Finance and Economics, 233030, Bengbu, China", 
          "id": "http://www.grid.ac/institutes/grid.464226.0", 
          "name": [
            "School of Management Science and Engineering, Anhui University of Finance and Economics, 233030, Bengbu, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Zizhen", 
        "id": "sg:person.01203007134.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203007134.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Khyber Pakhtunkhwa, Pakistan", 
          "id": "http://www.grid.ac/institutes/grid.418920.6", 
          "name": [
            "Department of Mathematics, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Khyber Pakhtunkhwa, Pakistan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zeb", 
        "givenName": "Anwar", 
        "id": "sg:person.0775313676.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775313676.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa", 
          "id": "http://www.grid.ac/institutes/grid.7836.a", 
          "name": [
            "Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Egbelowo", 
        "givenName": "Oluwaseun Francis", 
        "id": "sg:person.013322626753.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013322626753.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Faculty of Arts and Sciences, Ondokuz Mays University, 55139, Samsun, Turkey", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Mathematics, Faculty of Arts and Sciences, Ondokuz Mays University, 55139, Samsun, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Erturk", 
        "givenName": "Vedat Suat", 
        "id": "sg:person.012412637437.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012412637437.53"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/s13662-020-02783-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1128871924", 
          "https://doi.org/10.1186/s13662-020-02783-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-72317-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104541227", 
          "https://doi.org/10.1007/978-3-319-72317-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-011-0157-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035314060", 
          "https://doi.org/10.1007/s11071-011-0157-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-981-13-9227-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1120267864", 
          "https://doi.org/10.1007/978-981-13-9227-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4899-7612-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005758969", 
          "https://doi.org/10.1007/978-1-4899-7612-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-78911-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009192881", 
          "https://doi.org/10.1007/978-3-540-78911-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1016592219341", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028652887", 
          "https://doi.org/10.1023/a:1016592219341"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2020-08-14", 
    "datePublishedReg": "2020-08-14", 
    "description": "In this work, we formulate and analyze a new mathematical model for COVID-19 epidemic with isolated class in fractional order. This model is described by a system of fractional-order differential equations model and includes five classes, namely, S (susceptible class), E (exposed class), I (infected class), Q (isolated class), and R (recovered class). Dynamics and numerical approximations for the proposed fractional-order model are studied. Firstly, positivity and boundedness of the model are established. Secondly, the basic reproduction number of the model is calculated by using the next generation matrix approach. Then, asymptotic stability of the model is investigated. Lastly, we apply the adaptive predictor\u2013corrector algorithm and fourth-order Runge\u2013Kutta (RK4) method to simulate the proposed model. Consequently, a set of numerical simulations are performed to support the validity of the theoretical results. The numerical simulations indicate that there is a good agreement between theoretical results and numerical ones.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s13662-020-02873-w", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1052613", 
        "issn": [
          "1687-1839", 
          "2731-4235"
        ], 
        "name": "Advances in Continuous and Discrete Models", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2020"
      }
    ], 
    "keywords": [
      "mathematical model", 
      "fractional-order mathematical model", 
      "theoretical results", 
      "fourth-order Runge\u2013Kutta method", 
      "next generation matrix approach", 
      "new mathematical model", 
      "differential equation model", 
      "order mathematical model", 
      "fractional-order differential equation model", 
      "Runge-Kutta method", 
      "predictor-corrector algorithm", 
      "fractional-order model", 
      "numerical simulations", 
      "basic reproduction number", 
      "numerical approximation", 
      "asymptotic stability", 
      "fractional order", 
      "matrix approach", 
      "numerical ones", 
      "reproduction number", 
      "isolated class", 
      "equation model", 
      "good agreement", 
      "dynamics", 
      "boundedness", 
      "simulations", 
      "approximation", 
      "model", 
      "class", 
      "algorithm", 
      "COVID-19 epidemic", 
      "set", 
      "validity", 
      "agreement", 
      "results", 
      "system", 
      "approach", 
      "stability", 
      "one", 
      "order", 
      "number", 
      "work", 
      "epidemic", 
      "positivity", 
      "method"
    ], 
    "name": "Dynamics of a fractional order mathematical model for COVID-19 epidemic", 
    "pagination": "420", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1130115002"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13662-020-02873-w"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "32834820"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13662-020-02873-w", 
      "https://app.dimensions.ai/details/publication/pub.1130115002"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T21:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_843.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s13662-020-02873-w"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13662-020-02873-w'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13662-020-02873-w'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13662-020-02873-w'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13662-020-02873-w'


 

This table displays all metadata directly associated to this object as RDF triples.

164 TRIPLES      21 PREDICATES      77 URIs      62 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13662-020-02873-w schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N0aea7065f0314b5ba254701e34f8b85c
4 schema:citation sg:pub.10.1007/978-1-4899-7612-3
5 sg:pub.10.1007/978-3-319-72317-4
6 sg:pub.10.1007/978-3-540-78911-6
7 sg:pub.10.1007/978-981-13-9227-6
8 sg:pub.10.1007/s11071-011-0157-5
9 sg:pub.10.1023/a:1016592219341
10 sg:pub.10.1186/s13662-020-02783-x
11 schema:datePublished 2020-08-14
12 schema:datePublishedReg 2020-08-14
13 schema:description In this work, we formulate and analyze a new mathematical model for COVID-19 epidemic with isolated class in fractional order. This model is described by a system of fractional-order differential equations model and includes five classes, namely, S (susceptible class), E (exposed class), I (infected class), Q (isolated class), and R (recovered class). Dynamics and numerical approximations for the proposed fractional-order model are studied. Firstly, positivity and boundedness of the model are established. Secondly, the basic reproduction number of the model is calculated by using the next generation matrix approach. Then, asymptotic stability of the model is investigated. Lastly, we apply the adaptive predictor–corrector algorithm and fourth-order Runge–Kutta (RK4) method to simulate the proposed model. Consequently, a set of numerical simulations are performed to support the validity of the theoretical results. The numerical simulations indicate that there is a good agreement between theoretical results and numerical ones.
14 schema:genre article
15 schema:isAccessibleForFree true
16 schema:isPartOf Nbc11c206d2de4c948a510677093525d1
17 Nf2976123eda44df4aa0ecc7830b769e3
18 sg:journal.1052613
19 schema:keywords COVID-19 epidemic
20 Runge-Kutta method
21 agreement
22 algorithm
23 approach
24 approximation
25 asymptotic stability
26 basic reproduction number
27 boundedness
28 class
29 differential equation model
30 dynamics
31 epidemic
32 equation model
33 fourth-order Runge–Kutta method
34 fractional order
35 fractional-order differential equation model
36 fractional-order mathematical model
37 fractional-order model
38 good agreement
39 isolated class
40 mathematical model
41 matrix approach
42 method
43 model
44 new mathematical model
45 next generation matrix approach
46 number
47 numerical approximation
48 numerical ones
49 numerical simulations
50 one
51 order
52 order mathematical model
53 positivity
54 predictor-corrector algorithm
55 reproduction number
56 results
57 set
58 simulations
59 stability
60 system
61 theoretical results
62 validity
63 work
64 schema:name Dynamics of a fractional order mathematical model for COVID-19 epidemic
65 schema:pagination 420
66 schema:productId N0087dfa2d43144d7b52288411de78ddf
67 N1424000d91c947ceb2f2994452e7fa69
68 Nfb690ea16cdd4830b743fea34cc2992d
69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1130115002
70 https://doi.org/10.1186/s13662-020-02873-w
71 schema:sdDatePublished 2022-11-24T21:04
72 schema:sdLicense https://scigraph.springernature.com/explorer/license/
73 schema:sdPublisher N0765a8ea7e0b426a925600786a8d46d4
74 schema:url https://doi.org/10.1186/s13662-020-02873-w
75 sgo:license sg:explorer/license/
76 sgo:sdDataset articles
77 rdf:type schema:ScholarlyArticle
78 N0087dfa2d43144d7b52288411de78ddf schema:name doi
79 schema:value 10.1186/s13662-020-02873-w
80 rdf:type schema:PropertyValue
81 N0765a8ea7e0b426a925600786a8d46d4 schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 N0aea7065f0314b5ba254701e34f8b85c rdf:first sg:person.01203007134.37
84 rdf:rest N1e296e14ca8447a0a99b16b4c0677bfe
85 N1424000d91c947ceb2f2994452e7fa69 schema:name dimensions_id
86 schema:value pub.1130115002
87 rdf:type schema:PropertyValue
88 N1e296e14ca8447a0a99b16b4c0677bfe rdf:first sg:person.0775313676.37
89 rdf:rest Ncbe3f44918b14761a0fa3cc3551e76a4
90 N220856f79b8f4cc9bf0fdaec2c9d9f81 rdf:first sg:person.012412637437.53
91 rdf:rest rdf:nil
92 Nbc11c206d2de4c948a510677093525d1 schema:volumeNumber 2020
93 rdf:type schema:PublicationVolume
94 Ncbe3f44918b14761a0fa3cc3551e76a4 rdf:first sg:person.013322626753.95
95 rdf:rest N220856f79b8f4cc9bf0fdaec2c9d9f81
96 Nf2976123eda44df4aa0ecc7830b769e3 schema:issueNumber 1
97 rdf:type schema:PublicationIssue
98 Nfb690ea16cdd4830b743fea34cc2992d schema:name pubmed_id
99 schema:value 32834820
100 rdf:type schema:PropertyValue
101 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
102 schema:name Mathematical Sciences
103 rdf:type schema:DefinedTerm
104 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
105 schema:name Pure Mathematics
106 rdf:type schema:DefinedTerm
107 sg:journal.1052613 schema:issn 1687-1839
108 2731-4235
109 schema:name Advances in Continuous and Discrete Models
110 schema:publisher Springer Nature
111 rdf:type schema:Periodical
112 sg:person.01203007134.37 schema:affiliation grid-institutes:grid.464226.0
113 schema:familyName Zhang
114 schema:givenName Zizhen
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203007134.37
116 rdf:type schema:Person
117 sg:person.012412637437.53 schema:affiliation grid-institutes:None
118 schema:familyName Erturk
119 schema:givenName Vedat Suat
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012412637437.53
121 rdf:type schema:Person
122 sg:person.013322626753.95 schema:affiliation grid-institutes:grid.7836.a
123 schema:familyName Egbelowo
124 schema:givenName Oluwaseun Francis
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013322626753.95
126 rdf:type schema:Person
127 sg:person.0775313676.37 schema:affiliation grid-institutes:grid.418920.6
128 schema:familyName Zeb
129 schema:givenName Anwar
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775313676.37
131 rdf:type schema:Person
132 sg:pub.10.1007/978-1-4899-7612-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005758969
133 https://doi.org/10.1007/978-1-4899-7612-3
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/978-3-319-72317-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104541227
136 https://doi.org/10.1007/978-3-319-72317-4
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/978-3-540-78911-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009192881
139 https://doi.org/10.1007/978-3-540-78911-6
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/978-981-13-9227-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1120267864
142 https://doi.org/10.1007/978-981-13-9227-6
143 rdf:type schema:CreativeWork
144 sg:pub.10.1007/s11071-011-0157-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035314060
145 https://doi.org/10.1007/s11071-011-0157-5
146 rdf:type schema:CreativeWork
147 sg:pub.10.1023/a:1016592219341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028652887
148 https://doi.org/10.1023/a:1016592219341
149 rdf:type schema:CreativeWork
150 sg:pub.10.1186/s13662-020-02783-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1128871924
151 https://doi.org/10.1186/s13662-020-02783-x
152 rdf:type schema:CreativeWork
153 grid-institutes:None schema:alternateName Department of Mathematics, Faculty of Arts and Sciences, Ondokuz Mays University, 55139, Samsun, Turkey
154 schema:name Department of Mathematics, Faculty of Arts and Sciences, Ondokuz Mays University, 55139, Samsun, Turkey
155 rdf:type schema:Organization
156 grid-institutes:grid.418920.6 schema:alternateName Department of Mathematics, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Khyber Pakhtunkhwa, Pakistan
157 schema:name Department of Mathematics, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Khyber Pakhtunkhwa, Pakistan
158 rdf:type schema:Organization
159 grid-institutes:grid.464226.0 schema:alternateName School of Management Science and Engineering, Anhui University of Finance and Economics, 233030, Bengbu, China
160 schema:name School of Management Science and Engineering, Anhui University of Finance and Economics, 233030, Bengbu, China
161 rdf:type schema:Organization
162 grid-institutes:grid.7836.a schema:alternateName Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
163 schema:name Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
164 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...