Generalized fractional integral inequalities of Hermite–Hadamard type for harmonically convex functions View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2020-03-26

AUTHORS

Dafang Zhao, Muhammad Aamir Ali, Artion Kashuri, Hüseyin Budak

ABSTRACT

In this paper, we establish inequalities of Hermite–Hadamard type for harmonically convex functions using a generalized fractional integral. The results of our paper are an extension of previously obtained results (İşcan in Hacet. J. Math. Stat. 43(6):935–942, 2014 and İşcan and Wu in Appl. Math. Comput. 238:237–244, 2014). We also discuss some special cases for our main results and obtain new inequalities of Hermite–Hadamard type. More... »

PAGES

137

References to SciGraph publications

  • 2010-08-26. On Hadamard-Type Inequalities Involving Several Kinds of Convexity in JOURNAL OF INEQUALITIES AND APPLICATIONS
  • 2013-11-07. New general integral inequalities for quasi-geometrically convex functions via fractional integrals in JOURNAL OF INEQUALITIES AND APPLICATIONS
  • 2017-10-25. Fractional Hermite-Hadamard inequalities containing generalized Mittag-Leffler function in JOURNAL OF INEQUALITIES AND APPLICATIONS
  • 2013-07-16. New generalized Hermite-Hadamard type inequalities and applications to special means in JOURNAL OF INEQUALITIES AND APPLICATIONS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s13662-020-02589-x

    DOI

    http://dx.doi.org/10.1186/s13662-020-02589-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1125929256


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "School of Mathematics and Statistics, Hubei Normal University, Huangshi, P.R. China", 
              "id": "http://www.grid.ac/institutes/grid.462271.4", 
              "name": [
                "College of Science, Hohai University, Nanjing, P.R. China", 
                "School of Mathematics and Statistics, Hubei Normal University, Huangshi, P.R. China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhao", 
            "givenName": "Dafang", 
            "id": "sg:person.012305220221.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012305220221.44"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Jiangsu Key Laboratory for NSLSCS, School of Mathematical Sciences, Nanjing Normal University, Nanjing, China", 
              "id": "http://www.grid.ac/institutes/grid.260474.3", 
              "name": [
                "Jiangsu Key Laboratory for NSLSCS, School of Mathematical Sciences, Nanjing Normal University, Nanjing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ali", 
            "givenName": "Muhammad Aamir", 
            "id": "sg:person.015237425415.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015237425415.50"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mathematics, Faculty of Technical Sciences, University of Ismail Qemali, Vlora, Albania", 
              "id": "http://www.grid.ac/institutes/grid.449798.f", 
              "name": [
                "Department of Mathematics, Faculty of Technical Sciences, University of Ismail Qemali, Vlora, Albania"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kashuri", 
            "givenName": "Artion", 
            "id": "sg:person.015225503411.80", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015225503411.80"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mathematics, Faculty of Science and Arts, D\u00fczce University, D\u00fczce, Turkey", 
              "id": "http://www.grid.ac/institutes/grid.412121.5", 
              "name": [
                "Department of Mathematics, Faculty of Science and Arts, D\u00fczce University, D\u00fczce, Turkey"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Budak", 
            "givenName": "H\u00fcseyin", 
            "id": "sg:person.07356663407.38", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07356663407.38"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1155/2010/286845", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027899658", 
              "https://doi.org/10.1155/2010/286845"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1029-242x-2013-491", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029086036", 
              "https://doi.org/10.1186/1029-242x-2013-491"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13660-017-1543-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092349968", 
              "https://doi.org/10.1186/s13660-017-1543-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1029-242x-2013-325", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036550502", 
              "https://doi.org/10.1186/1029-242x-2013-325"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2020-03-26", 
        "datePublishedReg": "2020-03-26", 
        "description": "In this paper, we establish inequalities of Hermite\u2013Hadamard type for harmonically convex functions using a generalized fractional integral. The results of our paper are an extension of previously obtained results (\u0130\u015fcan in Hacet. J. Math. Stat. 43(6):935\u2013942, 2014 and \u0130\u015fcan and Wu in Appl. Math. Comput. 238:237\u2013244, 2014). We also discuss some special cases for our main results and obtain new inequalities of Hermite\u2013Hadamard type.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s13662-020-02589-x", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1052613", 
            "issn": [
              "1687-1839", 
              "2731-4235"
            ], 
            "name": "Advances in Continuous and Discrete Models", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2020"
          }
        ], 
        "keywords": [
          "Hermite\u2013Hadamard type", 
          "main results", 
          "function", 
          "types", 
          "cases", 
          "results", 
          "fractional integral inequalities", 
          "generalized fractional integrals", 
          "extension", 
          "inequality", 
          "convex functions", 
          "new inequalities", 
          "integral inequalities", 
          "fractional integrals", 
          "special case", 
          "paper", 
          "integrals"
        ], 
        "name": "Generalized fractional integral inequalities of Hermite\u2013Hadamard type for harmonically convex functions", 
        "pagination": "137", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1125929256"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s13662-020-02589-x"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s13662-020-02589-x", 
          "https://app.dimensions.ai/details/publication/pub.1125929256"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:41", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_861.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s13662-020-02589-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13662-020-02589-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13662-020-02589-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13662-020-02589-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13662-020-02589-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    121 TRIPLES      21 PREDICATES      45 URIs      33 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s13662-020-02589-x schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N1564a06c872641a89f4c153b62212c1c
    4 schema:citation sg:pub.10.1155/2010/286845
    5 sg:pub.10.1186/1029-242x-2013-325
    6 sg:pub.10.1186/1029-242x-2013-491
    7 sg:pub.10.1186/s13660-017-1543-4
    8 schema:datePublished 2020-03-26
    9 schema:datePublishedReg 2020-03-26
    10 schema:description In this paper, we establish inequalities of Hermite–Hadamard type for harmonically convex functions using a generalized fractional integral. The results of our paper are an extension of previously obtained results (İşcan in Hacet. J. Math. Stat. 43(6):935–942, 2014 and İşcan and Wu in Appl. Math. Comput. 238:237–244, 2014). We also discuss some special cases for our main results and obtain new inequalities of Hermite–Hadamard type.
    11 schema:genre article
    12 schema:isAccessibleForFree true
    13 schema:isPartOf N090f9a0a06674cd3bd8635edbe32e835
    14 N13a5c74998be4940a05bdbeb7dbadb20
    15 sg:journal.1052613
    16 schema:keywords Hermite–Hadamard type
    17 cases
    18 convex functions
    19 extension
    20 fractional integral inequalities
    21 fractional integrals
    22 function
    23 generalized fractional integrals
    24 inequality
    25 integral inequalities
    26 integrals
    27 main results
    28 new inequalities
    29 paper
    30 results
    31 special case
    32 types
    33 schema:name Generalized fractional integral inequalities of Hermite–Hadamard type for harmonically convex functions
    34 schema:pagination 137
    35 schema:productId N8e827233051b4a84a8c269b06a44fab8
    36 Nc93ec28e75404d9d9c9fb8d80c6a35b8
    37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1125929256
    38 https://doi.org/10.1186/s13662-020-02589-x
    39 schema:sdDatePublished 2022-12-01T06:41
    40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    41 schema:sdPublisher N06298a192ecd4d7bafd465acd245a426
    42 schema:url https://doi.org/10.1186/s13662-020-02589-x
    43 sgo:license sg:explorer/license/
    44 sgo:sdDataset articles
    45 rdf:type schema:ScholarlyArticle
    46 N06298a192ecd4d7bafd465acd245a426 schema:name Springer Nature - SN SciGraph project
    47 rdf:type schema:Organization
    48 N090f9a0a06674cd3bd8635edbe32e835 schema:issueNumber 1
    49 rdf:type schema:PublicationIssue
    50 N13a5c74998be4940a05bdbeb7dbadb20 schema:volumeNumber 2020
    51 rdf:type schema:PublicationVolume
    52 N1564a06c872641a89f4c153b62212c1c rdf:first sg:person.012305220221.44
    53 rdf:rest N71ecf492ac9a4562b850ab93ddea6bcc
    54 N71ecf492ac9a4562b850ab93ddea6bcc rdf:first sg:person.015237425415.50
    55 rdf:rest Ne01d0d9280da47558aad39f07568909c
    56 N8e827233051b4a84a8c269b06a44fab8 schema:name dimensions_id
    57 schema:value pub.1125929256
    58 rdf:type schema:PropertyValue
    59 Nc8d272a3cacc4205a87726185e36a315 rdf:first sg:person.07356663407.38
    60 rdf:rest rdf:nil
    61 Nc93ec28e75404d9d9c9fb8d80c6a35b8 schema:name doi
    62 schema:value 10.1186/s13662-020-02589-x
    63 rdf:type schema:PropertyValue
    64 Ne01d0d9280da47558aad39f07568909c rdf:first sg:person.015225503411.80
    65 rdf:rest Nc8d272a3cacc4205a87726185e36a315
    66 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    67 schema:name Mathematical Sciences
    68 rdf:type schema:DefinedTerm
    69 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    70 schema:name Pure Mathematics
    71 rdf:type schema:DefinedTerm
    72 sg:journal.1052613 schema:issn 1687-1839
    73 2731-4235
    74 schema:name Advances in Continuous and Discrete Models
    75 schema:publisher Springer Nature
    76 rdf:type schema:Periodical
    77 sg:person.012305220221.44 schema:affiliation grid-institutes:grid.462271.4
    78 schema:familyName Zhao
    79 schema:givenName Dafang
    80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012305220221.44
    81 rdf:type schema:Person
    82 sg:person.015225503411.80 schema:affiliation grid-institutes:grid.449798.f
    83 schema:familyName Kashuri
    84 schema:givenName Artion
    85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015225503411.80
    86 rdf:type schema:Person
    87 sg:person.015237425415.50 schema:affiliation grid-institutes:grid.260474.3
    88 schema:familyName Ali
    89 schema:givenName Muhammad Aamir
    90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015237425415.50
    91 rdf:type schema:Person
    92 sg:person.07356663407.38 schema:affiliation grid-institutes:grid.412121.5
    93 schema:familyName Budak
    94 schema:givenName Hüseyin
    95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07356663407.38
    96 rdf:type schema:Person
    97 sg:pub.10.1155/2010/286845 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027899658
    98 https://doi.org/10.1155/2010/286845
    99 rdf:type schema:CreativeWork
    100 sg:pub.10.1186/1029-242x-2013-325 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036550502
    101 https://doi.org/10.1186/1029-242x-2013-325
    102 rdf:type schema:CreativeWork
    103 sg:pub.10.1186/1029-242x-2013-491 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029086036
    104 https://doi.org/10.1186/1029-242x-2013-491
    105 rdf:type schema:CreativeWork
    106 sg:pub.10.1186/s13660-017-1543-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092349968
    107 https://doi.org/10.1186/s13660-017-1543-4
    108 rdf:type schema:CreativeWork
    109 grid-institutes:grid.260474.3 schema:alternateName Jiangsu Key Laboratory for NSLSCS, School of Mathematical Sciences, Nanjing Normal University, Nanjing, China
    110 schema:name Jiangsu Key Laboratory for NSLSCS, School of Mathematical Sciences, Nanjing Normal University, Nanjing, China
    111 rdf:type schema:Organization
    112 grid-institutes:grid.412121.5 schema:alternateName Department of Mathematics, Faculty of Science and Arts, Düzce University, Düzce, Turkey
    113 schema:name Department of Mathematics, Faculty of Science and Arts, Düzce University, Düzce, Turkey
    114 rdf:type schema:Organization
    115 grid-institutes:grid.449798.f schema:alternateName Department of Mathematics, Faculty of Technical Sciences, University of Ismail Qemali, Vlora, Albania
    116 schema:name Department of Mathematics, Faculty of Technical Sciences, University of Ismail Qemali, Vlora, Albania
    117 rdf:type schema:Organization
    118 grid-institutes:grid.462271.4 schema:alternateName School of Mathematics and Statistics, Hubei Normal University, Huangshi, P.R. China
    119 schema:name College of Science, Hohai University, Nanjing, P.R. China
    120 School of Mathematics and Statistics, Hubei Normal University, Huangshi, P.R. China
    121 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...