Matrix transformations of Norlund–Orlicz difference sequence spaces of nonabsolute type and their Toeplitz duals View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2020-03-10

AUTHORS

Adem Kılıçman, Kuldip Raj

ABSTRACT

In this paper, the Nörlund–Orlicz difference sequence space Nt(F,Δnm,u,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{N}^{t}(\mathcal{F},\Delta^{m}_{n},u,q)$\end{document} of nonabsolute type is introduced as a domain of Nörlund means which is isomorphic to the space ℓ(p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\ell(p)$\end{document} and the basis of the space is constructed. Additionally, the α−, β−, and γ-duals of the spaces are computed and their matrix transformations are given. Finally, the properties like rotundity, modularity of the newly formed spaces are established. More... »

PAGES

110

References to SciGraph publications

  • 1983. Orlicz Spaces and Modular Spaces in NONE
  • 1969. Lectures on Summability in NONE
  • 1971-09. On orlicz sequence spaces in ISRAEL JOURNAL OF MATHEMATICS
  • 2015-02-03. On certain generalized paranormed spaces in JOURNAL OF INEQUALITIES AND APPLICATIONS
  • 2017-04-21. Domain of the Nörlund Matrix in Some of Maddox’s Spaces in PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES, INDIA SECTION A: PHYSICAL SCIENCES
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s13662-020-02567-3

    DOI

    http://dx.doi.org/10.1186/s13662-020-02567-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1125551550


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Mathematics and Institite for Mathematical Research, Universiti Putra Malaysia, Serdang, Malaysia", 
              "id": "http://www.grid.ac/institutes/grid.11142.37", 
              "name": [
                "Department of Mathematics and Institite for Mathematical Research, Universiti Putra Malaysia, Serdang, Malaysia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "K\u0131l\u0131\u00e7man", 
            "givenName": "Adem", 
            "id": "sg:person.014231676063.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014231676063.05"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Mathematics, Shri Mata Vaishno Devi University, Katra, India", 
              "id": "http://www.grid.ac/institutes/grid.440710.6", 
              "name": [
                "School of Mathematics, Shri Mata Vaishno Devi University, Katra, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Raj", 
            "givenName": "Kuldip", 
            "id": "sg:person.010225026273.60", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010225026273.60"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bfb0072210", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018331833", 
              "https://doi.org/10.1007/bfb0072210"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40010-017-0359-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085019146", 
              "https://doi.org/10.1007/s40010-017-0359-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13660-015-0565-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048258803", 
              "https://doi.org/10.1186/s13660-015-0565-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0060951", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013824242", 
              "https://doi.org/10.1007/bfb0060951"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02771656", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004057852", 
              "https://doi.org/10.1007/bf02771656"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2020-03-10", 
        "datePublishedReg": "2020-03-10", 
        "description": "In this paper, the N\u00f6rlund\u2013Orlicz difference sequence space Nt(F,\u0394nm,u,q)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\mathcal{N}^{t}(\\mathcal{F},\\Delta^{m}_{n},u,q)$\\end{document} of nonabsolute type is introduced as a domain of N\u00f6rlund means which is isomorphic to the space \u2113(p)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\ell(p)$\\end{document} and the basis of the space is constructed. Additionally, the \u03b1\u2212, \u03b2\u2212, and \u03b3-duals of the spaces are computed and their matrix transformations are given. Finally, the properties like rotundity, modularity of the newly formed spaces are established.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s13662-020-02567-3", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1052613", 
            "issn": [
              "1687-1839", 
              "2731-4235"
            ], 
            "name": "Advances in Continuous and Discrete Models", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2020"
          }
        ], 
        "keywords": [
          "difference sequence spaces", 
          "matrix transformation", 
          "nonabsolute type", 
          "sequence space", 
          "\u03b3-duals", 
          "space", 
          "dual", 
          "rotundity", 
          "N\u00f6rlund means", 
          "transformation", 
          "properties", 
          "modularity", 
          "means", 
          "types", 
          "domain", 
          "basis", 
          "paper"
        ], 
        "name": "Matrix transformations of Norlund\u2013Orlicz difference sequence spaces of nonabsolute type and their Toeplitz duals", 
        "pagination": "110", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1125551550"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s13662-020-02567-3"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s13662-020-02567-3", 
          "https://app.dimensions.ai/details/publication/pub.1125551550"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-11-24T21:04", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_843.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s13662-020-02567-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13662-020-02567-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13662-020-02567-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13662-020-02567-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13662-020-02567-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    104 TRIPLES      21 PREDICATES      46 URIs      33 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s13662-020-02567-3 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Nd6bc690bd4f84398a2b1174833ef1d96
    4 schema:citation sg:pub.10.1007/bf02771656
    5 sg:pub.10.1007/bfb0060951
    6 sg:pub.10.1007/bfb0072210
    7 sg:pub.10.1007/s40010-017-0359-4
    8 sg:pub.10.1186/s13660-015-0565-z
    9 schema:datePublished 2020-03-10
    10 schema:datePublishedReg 2020-03-10
    11 schema:description In this paper, the Nörlund–Orlicz difference sequence space Nt(F,Δnm,u,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{N}^{t}(\mathcal{F},\Delta^{m}_{n},u,q)$\end{document} of nonabsolute type is introduced as a domain of Nörlund means which is isomorphic to the space ℓ(p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\ell(p)$\end{document} and the basis of the space is constructed. Additionally, the α−, β−, and γ-duals of the spaces are computed and their matrix transformations are given. Finally, the properties like rotundity, modularity of the newly formed spaces are established.
    12 schema:genre article
    13 schema:isAccessibleForFree true
    14 schema:isPartOf Nafd130d0d2c24ac6b16058060be28615
    15 Nf7181157a18a4a74a769c88edb45fc10
    16 sg:journal.1052613
    17 schema:keywords Nörlund means
    18 basis
    19 difference sequence spaces
    20 domain
    21 dual
    22 matrix transformation
    23 means
    24 modularity
    25 nonabsolute type
    26 paper
    27 properties
    28 rotundity
    29 sequence space
    30 space
    31 transformation
    32 types
    33 γ-duals
    34 schema:name Matrix transformations of Norlund–Orlicz difference sequence spaces of nonabsolute type and their Toeplitz duals
    35 schema:pagination 110
    36 schema:productId Naab64df851d6470a80754d6dfb64aa36
    37 Nc20e944efab047c58089de2e3d56fc31
    38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1125551550
    39 https://doi.org/10.1186/s13662-020-02567-3
    40 schema:sdDatePublished 2022-11-24T21:04
    41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    42 schema:sdPublisher N27062acde22a484f9f86ae3bf7597041
    43 schema:url https://doi.org/10.1186/s13662-020-02567-3
    44 sgo:license sg:explorer/license/
    45 sgo:sdDataset articles
    46 rdf:type schema:ScholarlyArticle
    47 N27062acde22a484f9f86ae3bf7597041 schema:name Springer Nature - SN SciGraph project
    48 rdf:type schema:Organization
    49 N3b52c756ef894d4f8c358e139a7cfaca rdf:first sg:person.010225026273.60
    50 rdf:rest rdf:nil
    51 Naab64df851d6470a80754d6dfb64aa36 schema:name doi
    52 schema:value 10.1186/s13662-020-02567-3
    53 rdf:type schema:PropertyValue
    54 Nafd130d0d2c24ac6b16058060be28615 schema:issueNumber 1
    55 rdf:type schema:PublicationIssue
    56 Nc20e944efab047c58089de2e3d56fc31 schema:name dimensions_id
    57 schema:value pub.1125551550
    58 rdf:type schema:PropertyValue
    59 Nd6bc690bd4f84398a2b1174833ef1d96 rdf:first sg:person.014231676063.05
    60 rdf:rest N3b52c756ef894d4f8c358e139a7cfaca
    61 Nf7181157a18a4a74a769c88edb45fc10 schema:volumeNumber 2020
    62 rdf:type schema:PublicationVolume
    63 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    64 schema:name Mathematical Sciences
    65 rdf:type schema:DefinedTerm
    66 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    67 schema:name Pure Mathematics
    68 rdf:type schema:DefinedTerm
    69 sg:journal.1052613 schema:issn 1687-1839
    70 2731-4235
    71 schema:name Advances in Continuous and Discrete Models
    72 schema:publisher Springer Nature
    73 rdf:type schema:Periodical
    74 sg:person.010225026273.60 schema:affiliation grid-institutes:grid.440710.6
    75 schema:familyName Raj
    76 schema:givenName Kuldip
    77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010225026273.60
    78 rdf:type schema:Person
    79 sg:person.014231676063.05 schema:affiliation grid-institutes:grid.11142.37
    80 schema:familyName Kılıçman
    81 schema:givenName Adem
    82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014231676063.05
    83 rdf:type schema:Person
    84 sg:pub.10.1007/bf02771656 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004057852
    85 https://doi.org/10.1007/bf02771656
    86 rdf:type schema:CreativeWork
    87 sg:pub.10.1007/bfb0060951 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013824242
    88 https://doi.org/10.1007/bfb0060951
    89 rdf:type schema:CreativeWork
    90 sg:pub.10.1007/bfb0072210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018331833
    91 https://doi.org/10.1007/bfb0072210
    92 rdf:type schema:CreativeWork
    93 sg:pub.10.1007/s40010-017-0359-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085019146
    94 https://doi.org/10.1007/s40010-017-0359-4
    95 rdf:type schema:CreativeWork
    96 sg:pub.10.1186/s13660-015-0565-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1048258803
    97 https://doi.org/10.1186/s13660-015-0565-z
    98 rdf:type schema:CreativeWork
    99 grid-institutes:grid.11142.37 schema:alternateName Department of Mathematics and Institite for Mathematical Research, Universiti Putra Malaysia, Serdang, Malaysia
    100 schema:name Department of Mathematics and Institite for Mathematical Research, Universiti Putra Malaysia, Serdang, Malaysia
    101 rdf:type schema:Organization
    102 grid-institutes:grid.440710.6 schema:alternateName School of Mathematics, Shri Mata Vaishno Devi University, Katra, India
    103 schema:name School of Mathematics, Shri Mata Vaishno Devi University, Katra, India
    104 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...