Some Tauberian conditions on logarithmic density View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-10-07

AUTHORS

Adem Kılıçman, Stuti Borgohain, Mehmet Küçükaslan

ABSTRACT

This article is based on the study on the λ-statistical convergence with respect to the logarithmic density and de la Vallee Poussin mean and generalizes some results of logarithmic λ-statistical convergence and logarithmic (V,λ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(V,\lambda )$\end{document}-summability theorems. Hardy’s and Landau’s Tauberian theorems to the statistical convergence, which was introduced by Fast long back in 1951, have been extended by J.A. Fridy and M.K. Khan (Proc. Am. Math. Soc. 128:2347–2355, 2000) in recent years. In this article we try to generalize some Tauberian conditions on logarithmic statistical convergence and logarithmic (V,λ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(V,\lambda )$\end{document}-statistical convergence, and we find some new results on it. More... »

PAGES

424

References to SciGraph publications

  • 2013-07-26. Logarithmic density and logarithmic statistical convergence in ADVANCES IN CONTINUOUS AND DISCRETE MODELS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s13662-019-2355-2

    DOI

    http://dx.doi.org/10.1186/s13662-019-2355-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1121556264


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Statistics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Mathematics and Institute for Mathematical Research, University of Putra Malaysia, Serdang, Malaysia", 
              "id": "http://www.grid.ac/institutes/grid.11142.37", 
              "name": [
                "Department of Mathematics and Institute for Mathematical Research, University of Putra Malaysia, Serdang, Malaysia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "K\u0131l\u0131\u00e7man", 
            "givenName": "Adem", 
            "id": "sg:person.014231676063.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014231676063.05"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mathematics, Institute of Chemical Technology, Mumbai, India", 
              "id": "http://www.grid.ac/institutes/grid.479974.0", 
              "name": [
                "Department of Mathematics, Institute of Chemical Technology, Mumbai, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Borgohain", 
            "givenName": "Stuti", 
            "id": "sg:person.013070422311.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013070422311.50"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mathematics, Mersin University, Mersin, Turkey", 
              "id": "http://www.grid.ac/institutes/grid.411691.a", 
              "name": [
                "Department of Mathematics, Mersin University, Mersin, Turkey"
              ], 
              "type": "Organization"
            }, 
            "familyName": "K\u00fc\u00e7\u00fckaslan", 
            "givenName": "Mehmet", 
            "id": "sg:person.015317207655.53", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015317207655.53"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1186/1687-1847-2013-227", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053735016", 
              "https://doi.org/10.1186/1687-1847-2013-227"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-10-07", 
        "datePublishedReg": "2019-10-07", 
        "description": "This article is based on the study on the \u03bb-statistical convergence with respect to the logarithmic density and de la Vallee Poussin mean and generalizes some results of logarithmic \u03bb-statistical convergence and logarithmic (V,\u03bb)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$(V,\\lambda )$\\end{document}-summability theorems. Hardy\u2019s and Landau\u2019s Tauberian theorems to the statistical convergence, which was introduced by Fast long back in 1951, have been extended by J.A. Fridy and M.K. Khan (Proc. Am. Math. Soc. 128:2347\u20132355, 2000) in recent years. In this article we try to generalize some Tauberian conditions on logarithmic statistical convergence and logarithmic (V,\u03bb)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$(V,\\lambda )$\\end{document}-statistical convergence, and we find some new results on it.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s13662-019-2355-2", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1052613", 
            "issn": [
              "1687-1839", 
              "2731-4235"
            ], 
            "name": "Advances in Continuous and Discrete Models", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2019"
          }
        ], 
        "keywords": [
          "statistical convergence", 
          "Tauberian theorems", 
          "Tauberian conditions", 
          "logarithmic density", 
          "summability theorems", 
          "new results", 
          "convergence", 
          "theorem", 
          "Fridy", 
          "Poussin", 
          "density", 
          "Hardy", 
          "conditions", 
          "results", 
          "recent years", 
          "respect", 
          "article", 
          "Khan", 
          "study", 
          "years"
        ], 
        "name": "Some Tauberian conditions on logarithmic density", 
        "pagination": "424", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1121556264"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s13662-019-2355-2"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s13662-019-2355-2", 
          "https://app.dimensions.ai/details/publication/pub.1121556264"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:39", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_796.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s13662-019-2355-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13662-019-2355-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13662-019-2355-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13662-019-2355-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13662-019-2355-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    101 TRIPLES      21 PREDICATES      44 URIs      35 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s13662-019-2355-2 schema:about anzsrc-for:01
    2 anzsrc-for:0104
    3 schema:author N7fa4695284c34a8bb4107ca57187a4c9
    4 schema:citation sg:pub.10.1186/1687-1847-2013-227
    5 schema:datePublished 2019-10-07
    6 schema:datePublishedReg 2019-10-07
    7 schema:description This article is based on the study on the λ-statistical convergence with respect to the logarithmic density and de la Vallee Poussin mean and generalizes some results of logarithmic λ-statistical convergence and logarithmic (V,λ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(V,\lambda )$\end{document}-summability theorems. Hardy’s and Landau’s Tauberian theorems to the statistical convergence, which was introduced by Fast long back in 1951, have been extended by J.A. Fridy and M.K. Khan (Proc. Am. Math. Soc. 128:2347–2355, 2000) in recent years. In this article we try to generalize some Tauberian conditions on logarithmic statistical convergence and logarithmic (V,λ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(V,\lambda )$\end{document}-statistical convergence, and we find some new results on it.
    8 schema:genre article
    9 schema:isAccessibleForFree true
    10 schema:isPartOf Nbf57a3a767084a3d8e8166bc70119246
    11 Ne8efc868aa35409f8b762a408567e1df
    12 sg:journal.1052613
    13 schema:keywords Fridy
    14 Hardy
    15 Khan
    16 Poussin
    17 Tauberian conditions
    18 Tauberian theorems
    19 article
    20 conditions
    21 convergence
    22 density
    23 logarithmic density
    24 new results
    25 recent years
    26 respect
    27 results
    28 statistical convergence
    29 study
    30 summability theorems
    31 theorem
    32 years
    33 schema:name Some Tauberian conditions on logarithmic density
    34 schema:pagination 424
    35 schema:productId N974690e536474fba8cdce6a4aeb3ae8a
    36 Nb95cf3cc0983448b8fbf39bee4221f0a
    37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1121556264
    38 https://doi.org/10.1186/s13662-019-2355-2
    39 schema:sdDatePublished 2022-12-01T06:39
    40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    41 schema:sdPublisher N8eeefcd0930a41d2900f10f6361549c0
    42 schema:url https://doi.org/10.1186/s13662-019-2355-2
    43 sgo:license sg:explorer/license/
    44 sgo:sdDataset articles
    45 rdf:type schema:ScholarlyArticle
    46 N23c7dea6ab6d4e108d16ae62b7697c88 rdf:first sg:person.015317207655.53
    47 rdf:rest rdf:nil
    48 N7a9ae455a4f84bba81a403d53aa307a6 rdf:first sg:person.013070422311.50
    49 rdf:rest N23c7dea6ab6d4e108d16ae62b7697c88
    50 N7fa4695284c34a8bb4107ca57187a4c9 rdf:first sg:person.014231676063.05
    51 rdf:rest N7a9ae455a4f84bba81a403d53aa307a6
    52 N8eeefcd0930a41d2900f10f6361549c0 schema:name Springer Nature - SN SciGraph project
    53 rdf:type schema:Organization
    54 N974690e536474fba8cdce6a4aeb3ae8a schema:name dimensions_id
    55 schema:value pub.1121556264
    56 rdf:type schema:PropertyValue
    57 Nb95cf3cc0983448b8fbf39bee4221f0a schema:name doi
    58 schema:value 10.1186/s13662-019-2355-2
    59 rdf:type schema:PropertyValue
    60 Nbf57a3a767084a3d8e8166bc70119246 schema:issueNumber 1
    61 rdf:type schema:PublicationIssue
    62 Ne8efc868aa35409f8b762a408567e1df schema:volumeNumber 2019
    63 rdf:type schema:PublicationVolume
    64 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    65 schema:name Mathematical Sciences
    66 rdf:type schema:DefinedTerm
    67 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
    68 schema:name Statistics
    69 rdf:type schema:DefinedTerm
    70 sg:journal.1052613 schema:issn 1687-1839
    71 2731-4235
    72 schema:name Advances in Continuous and Discrete Models
    73 schema:publisher Springer Nature
    74 rdf:type schema:Periodical
    75 sg:person.013070422311.50 schema:affiliation grid-institutes:grid.479974.0
    76 schema:familyName Borgohain
    77 schema:givenName Stuti
    78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013070422311.50
    79 rdf:type schema:Person
    80 sg:person.014231676063.05 schema:affiliation grid-institutes:grid.11142.37
    81 schema:familyName Kılıçman
    82 schema:givenName Adem
    83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014231676063.05
    84 rdf:type schema:Person
    85 sg:person.015317207655.53 schema:affiliation grid-institutes:grid.411691.a
    86 schema:familyName Küçükaslan
    87 schema:givenName Mehmet
    88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015317207655.53
    89 rdf:type schema:Person
    90 sg:pub.10.1186/1687-1847-2013-227 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053735016
    91 https://doi.org/10.1186/1687-1847-2013-227
    92 rdf:type schema:CreativeWork
    93 grid-institutes:grid.11142.37 schema:alternateName Department of Mathematics and Institute for Mathematical Research, University of Putra Malaysia, Serdang, Malaysia
    94 schema:name Department of Mathematics and Institute for Mathematical Research, University of Putra Malaysia, Serdang, Malaysia
    95 rdf:type schema:Organization
    96 grid-institutes:grid.411691.a schema:alternateName Department of Mathematics, Mersin University, Mersin, Turkey
    97 schema:name Department of Mathematics, Mersin University, Mersin, Turkey
    98 rdf:type schema:Organization
    99 grid-institutes:grid.479974.0 schema:alternateName Department of Mathematics, Institute of Chemical Technology, Mumbai, India
    100 schema:name Department of Mathematics, Institute of Chemical Technology, Mumbai, India
    101 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...