Multiple positive solutions for a coupled system of nonlinear impulsive fractional differential equations with parameters View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Kun Wang, Ping Gong

ABSTRACT

We consider the multiplicity of positive solutions (PSs) for a coupled system involving nonlinear impulsive fractional differential equations with parameters. By employing the classical Guo–Krasnosel’skii fixed point theorem, some sufficient criteria for the existence of multiple PSs in terms of different values of parameters are derived. As an application, an example is given to illustrate the theoretical results. More... »

PAGES

102

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13662-019-2049-9

DOI

http://dx.doi.org/10.1186/s13662-019-2049-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112646038


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Xiamen University", 
          "id": "https://www.grid.ac/institutes/grid.12955.3a", 
          "name": [
            "School of Mathematical Sciences, Xiamen University, Xiamen, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Kun", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "South China Normal University", 
          "id": "https://www.grid.ac/institutes/grid.263785.d", 
          "name": [
            "School of Mathematical Sciences, South China Normal University, Guangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gong", 
        "givenName": "Ping", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.cnsns.2012.06.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000659952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1004498595", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4613-1281-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004498595", 
          "https://doi.org/10.1007/978-1-4613-1281-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4613-1281-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004498595", 
          "https://doi.org/10.1007/978-1-4613-1281-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13661-014-0280-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007370909", 
          "https://doi.org/10.1186/s13661-014-0280-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13661-014-0280-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007370909", 
          "https://doi.org/10.1186/s13661-014-0280-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1687-1847-2014-254", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017367334", 
          "https://doi.org/10.1186/1687-1847-2014-254"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amc.2014.12.092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027121678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jfranklin.2017.01.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030224002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13662-015-0686-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030446320", 
          "https://doi.org/10.1186/s13662-015-0686-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13662-015-0686-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030446320", 
          "https://doi.org/10.1186/s13662-015-0686-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13662-015-0686-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030446320", 
          "https://doi.org/10.1186/s13662-015-0686-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1687-1847-2014-255", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031465484", 
          "https://doi.org/10.1186/1687-1847-2014-255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1687-1847-2014-255", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031465484", 
          "https://doi.org/10.1186/1687-1847-2014-255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.camwa.2013.01.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034803044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-0208(06)80001-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038845055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12591-012-0150-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041532177", 
          "https://doi.org/10.1007/s12591-012-0150-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amc.2011.01.103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044779507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amc.2015.01.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048411955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12346-014-0121-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052331299", 
          "https://doi.org/10.1007/s12346-014-0121-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-cta.2016.0606", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056824605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.4000563", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062140926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.4000563", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062140926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amc.2017.02.045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084057214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/ms-2016-0281", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085550022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1099011931", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aml.2018.02.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101550631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aml.2018.02.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101550631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/fca-2018-0021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104503548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aml.2018.06.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104898996"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "We consider the multiplicity of positive solutions (PSs) for a coupled system involving nonlinear impulsive fractional differential equations with parameters. By employing the classical Guo\u2013Krasnosel\u2019skii fixed point theorem, some sufficient criteria for the existence of multiple PSs in terms of different values of parameters are derived. As an application, an example is given to illustrate the theoretical results.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s13662-019-2049-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1052613", 
        "issn": [
          "1687-1839", 
          "1687-1847"
        ], 
        "name": "Advances in Difference Equations", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2019"
      }
    ], 
    "name": "Multiple positive solutions for a coupled system of nonlinear impulsive fractional differential equations with parameters", 
    "pagination": "102", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e70d969778413e16eceae3d348ce9350d061b19841c8f03ffb09606b250c4f45"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13662-019-2049-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112646038"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13662-019-2049-9", 
      "https://app.dimensions.ai/details/publication/pub.1112646038"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000354_0000000354/records_11707_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs13662-019-2049-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13662-019-2049-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13662-019-2049-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13662-019-2049-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13662-019-2049-9'


 

This table displays all metadata directly associated to this object as RDF triples.

143 TRIPLES      21 PREDICATES      50 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13662-019-2049-9 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author N1ab55b4c2dcd4fd4b94e5d58e251a0fd
4 schema:citation sg:pub.10.1007/978-1-4613-1281-9
5 sg:pub.10.1007/s12346-014-0121-0
6 sg:pub.10.1007/s12591-012-0150-6
7 sg:pub.10.1186/1687-1847-2014-254
8 sg:pub.10.1186/1687-1847-2014-255
9 sg:pub.10.1186/s13661-014-0280-6
10 sg:pub.10.1186/s13662-015-0686-1
11 https://app.dimensions.ai/details/publication/pub.1004498595
12 https://app.dimensions.ai/details/publication/pub.1099011931
13 https://doi.org/10.1016/j.amc.2011.01.103
14 https://doi.org/10.1016/j.amc.2014.12.092
15 https://doi.org/10.1016/j.amc.2015.01.013
16 https://doi.org/10.1016/j.amc.2017.02.045
17 https://doi.org/10.1016/j.aml.2018.02.004
18 https://doi.org/10.1016/j.aml.2018.06.010
19 https://doi.org/10.1016/j.camwa.2013.01.034
20 https://doi.org/10.1016/j.cnsns.2012.06.014
21 https://doi.org/10.1016/j.jfranklin.2017.01.001
22 https://doi.org/10.1016/s0304-0208(06)80001-0
23 https://doi.org/10.1049/iet-cta.2016.0606
24 https://doi.org/10.1115/1.4000563
25 https://doi.org/10.1515/fca-2018-0021
26 https://doi.org/10.1515/ms-2016-0281
27 schema:datePublished 2019-12
28 schema:datePublishedReg 2019-12-01
29 schema:description We consider the multiplicity of positive solutions (PSs) for a coupled system involving nonlinear impulsive fractional differential equations with parameters. By employing the classical Guo–Krasnosel’skii fixed point theorem, some sufficient criteria for the existence of multiple PSs in terms of different values of parameters are derived. As an application, an example is given to illustrate the theoretical results.
30 schema:genre research_article
31 schema:inLanguage en
32 schema:isAccessibleForFree true
33 schema:isPartOf N112c38e002334baba88ef0c76cb517ff
34 Nb377dc9d1849491199049ee00a18c6f3
35 sg:journal.1052613
36 schema:name Multiple positive solutions for a coupled system of nonlinear impulsive fractional differential equations with parameters
37 schema:pagination 102
38 schema:productId N460b432699bb42ddacdf8f038e8da460
39 Nac574bb05ad744e48c37576e0b82a5a3
40 Nf9e1b58245c343248557aa4be735702a
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112646038
42 https://doi.org/10.1186/s13662-019-2049-9
43 schema:sdDatePublished 2019-04-11T11:19
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher Ncccee652a050482ca9467963c18b518a
46 schema:url https://link.springer.com/10.1186%2Fs13662-019-2049-9
47 sgo:license sg:explorer/license/
48 sgo:sdDataset articles
49 rdf:type schema:ScholarlyArticle
50 N0ced4dc414104c14aacd67c009b8e297 schema:affiliation https://www.grid.ac/institutes/grid.12955.3a
51 schema:familyName Wang
52 schema:givenName Kun
53 rdf:type schema:Person
54 N112c38e002334baba88ef0c76cb517ff schema:volumeNumber 2019
55 rdf:type schema:PublicationVolume
56 N1ab55b4c2dcd4fd4b94e5d58e251a0fd rdf:first N0ced4dc414104c14aacd67c009b8e297
57 rdf:rest N73177f0b4bdc48bab5274bc3053829f5
58 N460b432699bb42ddacdf8f038e8da460 schema:name readcube_id
59 schema:value e70d969778413e16eceae3d348ce9350d061b19841c8f03ffb09606b250c4f45
60 rdf:type schema:PropertyValue
61 N6d4ee20d2f6f4d0e9953ca1e3d7cea86 schema:affiliation https://www.grid.ac/institutes/grid.263785.d
62 schema:familyName Gong
63 schema:givenName Ping
64 rdf:type schema:Person
65 N73177f0b4bdc48bab5274bc3053829f5 rdf:first N6d4ee20d2f6f4d0e9953ca1e3d7cea86
66 rdf:rest rdf:nil
67 Nac574bb05ad744e48c37576e0b82a5a3 schema:name doi
68 schema:value 10.1186/s13662-019-2049-9
69 rdf:type schema:PropertyValue
70 Nb377dc9d1849491199049ee00a18c6f3 schema:issueNumber 1
71 rdf:type schema:PublicationIssue
72 Ncccee652a050482ca9467963c18b518a schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 Nf9e1b58245c343248557aa4be735702a schema:name dimensions_id
75 schema:value pub.1112646038
76 rdf:type schema:PropertyValue
77 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
78 schema:name Mathematical Sciences
79 rdf:type schema:DefinedTerm
80 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
81 schema:name Applied Mathematics
82 rdf:type schema:DefinedTerm
83 sg:journal.1052613 schema:issn 1687-1839
84 1687-1847
85 schema:name Advances in Difference Equations
86 rdf:type schema:Periodical
87 sg:pub.10.1007/978-1-4613-1281-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004498595
88 https://doi.org/10.1007/978-1-4613-1281-9
89 rdf:type schema:CreativeWork
90 sg:pub.10.1007/s12346-014-0121-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052331299
91 https://doi.org/10.1007/s12346-014-0121-0
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/s12591-012-0150-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041532177
94 https://doi.org/10.1007/s12591-012-0150-6
95 rdf:type schema:CreativeWork
96 sg:pub.10.1186/1687-1847-2014-254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017367334
97 https://doi.org/10.1186/1687-1847-2014-254
98 rdf:type schema:CreativeWork
99 sg:pub.10.1186/1687-1847-2014-255 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031465484
100 https://doi.org/10.1186/1687-1847-2014-255
101 rdf:type schema:CreativeWork
102 sg:pub.10.1186/s13661-014-0280-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007370909
103 https://doi.org/10.1186/s13661-014-0280-6
104 rdf:type schema:CreativeWork
105 sg:pub.10.1186/s13662-015-0686-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030446320
106 https://doi.org/10.1186/s13662-015-0686-1
107 rdf:type schema:CreativeWork
108 https://app.dimensions.ai/details/publication/pub.1004498595 schema:CreativeWork
109 https://app.dimensions.ai/details/publication/pub.1099011931 schema:CreativeWork
110 https://doi.org/10.1016/j.amc.2011.01.103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044779507
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/j.amc.2014.12.092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027121678
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.amc.2015.01.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048411955
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.amc.2017.02.045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084057214
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.aml.2018.02.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101550631
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.aml.2018.06.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104898996
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.camwa.2013.01.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034803044
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.cnsns.2012.06.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000659952
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.jfranklin.2017.01.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030224002
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/s0304-0208(06)80001-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038845055
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1049/iet-cta.2016.0606 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056824605
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1115/1.4000563 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062140926
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1515/fca-2018-0021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104503548
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1515/ms-2016-0281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085550022
137 rdf:type schema:CreativeWork
138 https://www.grid.ac/institutes/grid.12955.3a schema:alternateName Xiamen University
139 schema:name School of Mathematical Sciences, Xiamen University, Xiamen, China
140 rdf:type schema:Organization
141 https://www.grid.ac/institutes/grid.263785.d schema:alternateName South China Normal University
142 schema:name School of Mathematical Sciences, South China Normal University, Guangzhou, China
143 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...