Some new solutions of the Caudrey–Dodd–Gibbon (CDG) equation using the conformable derivative View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Sadaf Bibi, Naveed Ahmed, Imran Faisal, Syed Tauseef Mohyud-Din, Muhammad Rafiq, Umar Khan

ABSTRACT

New exact solutions of the space–time conformable Caudrey–Dodd–Gibbon (CDG) equation have been derived by implementing the conformable derivative. The generalized Riccati equation mapping method is applied to figure out twenty-seven forms of exact solutions, which are soliton, rational, and periodic ones. Also, for some suitable values of parameters, the exact solutions are found, namely dark, bell type, periodic, soliton, singular soliton, and several others, by using the conformable derivative. These types of solutions have not been proclaimed so far. 2D and 3D graphical patterns of some solutions are also given for clarification of physical features. The conformable derivative is one of the excellent choices to solve the nonlinear conformable problems arising in theory of solitons and many other areas. The results are new and very interesting for the large community of researchers working in the field of mathematics and mathematical physics. More... »

PAGES

89

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13662-019-2030-7

DOI

http://dx.doi.org/10.1186/s13662-019-2030-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112548086


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "HITEC University", 
          "id": "https://www.grid.ac/institutes/grid.448709.6", 
          "name": [
            "Department of Mathematics, Faculty of Sciences, HITEC University, Taxila Cantt, Pakistan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bibi", 
        "givenName": "Sadaf", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "HITEC University", 
          "id": "https://www.grid.ac/institutes/grid.448709.6", 
          "name": [
            "Department of Mathematics, Faculty of Sciences, HITEC University, Taxila Cantt, Pakistan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ahmed", 
        "givenName": "Naveed", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Taibah University", 
          "id": "https://www.grid.ac/institutes/grid.412892.4", 
          "name": [
            "Department of Mathematics, Faculty of Science, Taibah University, Al Medina, Kingdom of Saudi Arabia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Faisal", 
        "givenName": "Imran", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "HITEC University", 
          "id": "https://www.grid.ac/institutes/grid.448709.6", 
          "name": [
            "Department of Mathematics, Faculty of Sciences, HITEC University, Taxila Cantt, Pakistan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mohyud-Din", 
        "givenName": "Syed Tauseef", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Quaid-i-Azam University", 
          "id": "https://www.grid.ac/institutes/grid.412621.2", 
          "name": [
            "Department of Mathematics, COMSATS University Islamabad (CUI), Wah Campus, Pakistan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rafiq", 
        "givenName": "Muhammad", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hazara University", 
          "id": "https://www.grid.ac/institutes/grid.440530.6", 
          "name": [
            "Department of Mathematics and Statistics, Hazara University, Mansehra, Pakistan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khan", 
        "givenName": "Umar", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s40324-015-0059-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001906343", 
          "https://doi.org/10.1007/s40324-015-0059-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-015-2318-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008574063", 
          "https://doi.org/10.1007/s11071-015-2318-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physleta.2011.04.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009376193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mma.3533", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010509198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chaos.2007.01.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011234037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1108/09615531211208042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011390805"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/math-2015-0081", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012301969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cam.2014.01.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012708443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/ijnsns.2010.11.2.87", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014189464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chaos.2005.10.100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014504177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2011/218216", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015330502"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2298/tsci160111018a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018925595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amc.2005.03.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032517242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chaos.2006.03.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032733241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/2193-1801-3-692", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036538816", 
          "https://doi.org/10.1186/2193-1801-3-692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amc.2008.08.052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039307767"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-18101-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041164416", 
          "https://doi.org/10.1007/978-3-642-18101-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-18101-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041164416", 
          "https://doi.org/10.1007/978-3-642-18101-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-015-2117-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042304187", 
          "https://doi.org/10.1007/s11071-015-2117-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amc.2007.08.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043534016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mma.4309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043983117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cpc.2016.11.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044072934"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11082-016-0681-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044202628", 
          "https://doi.org/10.1007/s11082-016-0681-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11082-016-0681-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044202628", 
          "https://doi.org/10.1007/s11082-016-0681-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chaos.2006.10.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046333771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/phys-2016-0010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046680970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.camwa.2006.12.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047454343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2014/156483", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050258060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/17455030.2016.1205237", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051505535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5897/sre2013.5772", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051676255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10092-015-0158-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052525009", 
          "https://doi.org/10.1007/s10092-015-0158-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11082-017-0895-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053825309", 
          "https://doi.org/10.1007/s11082-017-0895-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11082-017-0895-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053825309", 
          "https://doi.org/10.1007/s11082-017-0895-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjp/i2017-11306-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053901619", 
          "https://doi.org/10.1140/epjp/i2017-11306-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjp/i2017-11306-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053901619", 
          "https://doi.org/10.1140/epjp/i2017-11306-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7763/ijmo.2013.v3.297", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074038906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1077546316687936", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083416412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1077546316687936", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083416412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijleo.2017.01.078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083541964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/tmj-2017-0010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083835260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/tmj-2017-0010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083835260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjp/i2017-11354-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083881918", 
          "https://doi.org/10.1140/epjp/i2017-11354-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjp/i2017-11354-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083881918", 
          "https://doi.org/10.1140/epjp/i2017-11354-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cam.2017.03.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084063239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijleo.2017.02.087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084080472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/17455030.2017.1296983", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090837076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.24200/sci.2016.3873", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091254324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amc.2017.08.048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091592702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11082-017-1195-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092292123", 
          "https://doi.org/10.1007/s11082-017-1195-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjp/i2018-11934-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101133640", 
          "https://doi.org/10.1140/epjp/i2018-11934-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjp/i2018-11934-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101133640", 
          "https://doi.org/10.1140/epjp/i2018-11934-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjp/i2018-11934-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101133640", 
          "https://doi.org/10.1140/epjp/i2018-11934-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjp/i2018-11934-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101133640", 
          "https://doi.org/10.1140/epjp/i2018-11934-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/17455030.2018.1462541", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103672311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amc.2018.04.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103856439"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-018-4367-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104249865", 
          "https://doi.org/10.1007/s11071-018-4367-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chaos.2018.06.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105086926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13662-018-1684-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105296487", 
          "https://doi.org/10.1186/s13662-018-1684-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13662-018-1684-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105296487", 
          "https://doi.org/10.1186/s13662-018-1684-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjp/i2018-12081-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105551688", 
          "https://doi.org/10.1140/epjp/i2018-12081-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjp/i2018-12081-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105551688", 
          "https://doi.org/10.1140/epjp/i2018-12081-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/16583655.2018.1515303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106434340"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "New exact solutions of the space\u2013time conformable Caudrey\u2013Dodd\u2013Gibbon (CDG) equation have been derived by implementing the conformable derivative. The generalized Riccati equation mapping method is applied to figure out twenty-seven forms of exact solutions, which are soliton, rational, and periodic ones. Also, for some suitable values of parameters, the exact solutions are found, namely dark, bell type, periodic, soliton, singular soliton, and several others, by using the conformable derivative. These types of solutions have not been proclaimed so far. 2D and 3D graphical patterns of some solutions are also given for clarification of physical features. The conformable derivative is one of the excellent choices to solve the nonlinear conformable problems arising in theory of solitons and many other areas. The results are new and very interesting for the large community of researchers working in the field of mathematics and mathematical physics.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s13662-019-2030-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1052613", 
        "issn": [
          "1687-1839", 
          "1687-1847"
        ], 
        "name": "Advances in Difference Equations", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2019"
      }
    ], 
    "name": "Some new solutions of the Caudrey\u2013Dodd\u2013Gibbon (CDG) equation using the conformable derivative", 
    "pagination": "89", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9055645e06584b9ba3266c89d04f36604f3f5e4244a062331fb69f850438f050"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13662-019-2030-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112548086"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13662-019-2030-7", 
      "https://app.dimensions.ai/details/publication/pub.1112548086"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000352_0000000352/records_60335_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs13662-019-2030-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13662-019-2030-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13662-019-2030-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13662-019-2030-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13662-019-2030-7'


 

This table displays all metadata directly associated to this object as RDF triples.

264 TRIPLES      21 PREDICATES      77 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13662-019-2030-7 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N849d55385d814a65a5e4e62b66d47351
4 schema:citation sg:pub.10.1007/978-3-642-18101-6
5 sg:pub.10.1007/s10092-015-0158-8
6 sg:pub.10.1007/s11071-015-2117-y
7 sg:pub.10.1007/s11071-015-2318-4
8 sg:pub.10.1007/s11071-018-4367-y
9 sg:pub.10.1007/s11082-016-0681-0
10 sg:pub.10.1007/s11082-017-0895-9
11 sg:pub.10.1007/s11082-017-1195-0
12 sg:pub.10.1007/s40324-015-0059-4
13 sg:pub.10.1140/epjp/i2017-11306-3
14 sg:pub.10.1140/epjp/i2017-11354-7
15 sg:pub.10.1140/epjp/i2018-11934-y
16 sg:pub.10.1140/epjp/i2018-12081-3
17 sg:pub.10.1186/2193-1801-3-692
18 sg:pub.10.1186/s13662-018-1684-x
19 https://doi.org/10.1002/mma.3533
20 https://doi.org/10.1002/mma.4309
21 https://doi.org/10.1016/j.amc.2005.03.029
22 https://doi.org/10.1016/j.amc.2007.08.008
23 https://doi.org/10.1016/j.amc.2008.08.052
24 https://doi.org/10.1016/j.amc.2017.08.048
25 https://doi.org/10.1016/j.amc.2018.04.025
26 https://doi.org/10.1016/j.cam.2014.01.002
27 https://doi.org/10.1016/j.cam.2017.03.011
28 https://doi.org/10.1016/j.camwa.2006.12.041
29 https://doi.org/10.1016/j.chaos.2005.10.100
30 https://doi.org/10.1016/j.chaos.2006.03.020
31 https://doi.org/10.1016/j.chaos.2006.10.015
32 https://doi.org/10.1016/j.chaos.2007.01.024
33 https://doi.org/10.1016/j.chaos.2018.06.009
34 https://doi.org/10.1016/j.cpc.2016.11.001
35 https://doi.org/10.1016/j.ijleo.2017.01.078
36 https://doi.org/10.1016/j.ijleo.2017.02.087
37 https://doi.org/10.1016/j.physleta.2011.04.039
38 https://doi.org/10.1080/16583655.2018.1515303
39 https://doi.org/10.1080/17455030.2016.1205237
40 https://doi.org/10.1080/17455030.2017.1296983
41 https://doi.org/10.1080/17455030.2018.1462541
42 https://doi.org/10.1108/09615531211208042
43 https://doi.org/10.1155/2011/218216
44 https://doi.org/10.1155/2014/156483
45 https://doi.org/10.1177/1077546316687936
46 https://doi.org/10.1515/ijnsns.2010.11.2.87
47 https://doi.org/10.1515/math-2015-0081
48 https://doi.org/10.1515/phys-2016-0010
49 https://doi.org/10.1515/tmj-2017-0010
50 https://doi.org/10.2298/tsci160111018a
51 https://doi.org/10.24200/sci.2016.3873
52 https://doi.org/10.5897/sre2013.5772
53 https://doi.org/10.7763/ijmo.2013.v3.297
54 schema:datePublished 2019-12
55 schema:datePublishedReg 2019-12-01
56 schema:description New exact solutions of the space–time conformable Caudrey–Dodd–Gibbon (CDG) equation have been derived by implementing the conformable derivative. The generalized Riccati equation mapping method is applied to figure out twenty-seven forms of exact solutions, which are soliton, rational, and periodic ones. Also, for some suitable values of parameters, the exact solutions are found, namely dark, bell type, periodic, soliton, singular soliton, and several others, by using the conformable derivative. These types of solutions have not been proclaimed so far. 2D and 3D graphical patterns of some solutions are also given for clarification of physical features. The conformable derivative is one of the excellent choices to solve the nonlinear conformable problems arising in theory of solitons and many other areas. The results are new and very interesting for the large community of researchers working in the field of mathematics and mathematical physics.
57 schema:genre research_article
58 schema:inLanguage en
59 schema:isAccessibleForFree true
60 schema:isPartOf N461e205af8a54aea8c433a6a352fbd79
61 Nab842091f2814439be55f91e94d5c5a9
62 sg:journal.1052613
63 schema:name Some new solutions of the Caudrey–Dodd–Gibbon (CDG) equation using the conformable derivative
64 schema:pagination 89
65 schema:productId N139a00b324174001bcd7211b2a2d8357
66 N90c6b5bedec648389cec6c1a81d8e9af
67 Nfeecf1bd8ec0471481de7ebffb5c519e
68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112548086
69 https://doi.org/10.1186/s13662-019-2030-7
70 schema:sdDatePublished 2019-04-11T10:59
71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
72 schema:sdPublisher N6ed7dbff815a4a28a8069a0588aadce7
73 schema:url https://link.springer.com/10.1186%2Fs13662-019-2030-7
74 sgo:license sg:explorer/license/
75 sgo:sdDataset articles
76 rdf:type schema:ScholarlyArticle
77 N139a00b324174001bcd7211b2a2d8357 schema:name dimensions_id
78 schema:value pub.1112548086
79 rdf:type schema:PropertyValue
80 N254415ea07834740b7a41f85e975b9f5 rdf:first Nce1a83050a504c9182f321081faa29e9
81 rdf:rest N7462c025c2144c6e80515ed24391927a
82 N2c60cb24d84d475497d898ff738abdcc schema:affiliation https://www.grid.ac/institutes/grid.412892.4
83 schema:familyName Faisal
84 schema:givenName Imran
85 rdf:type schema:Person
86 N2d2ffe67e87c4df4b62074732b9f19dd schema:affiliation https://www.grid.ac/institutes/grid.440530.6
87 schema:familyName Khan
88 schema:givenName Umar
89 rdf:type schema:Person
90 N3df2a11379d04e79ac22cdf2c7768973 schema:affiliation https://www.grid.ac/institutes/grid.448709.6
91 schema:familyName Ahmed
92 schema:givenName Naveed
93 rdf:type schema:Person
94 N461e205af8a54aea8c433a6a352fbd79 schema:volumeNumber 2019
95 rdf:type schema:PublicationVolume
96 N688be7a9e3ee4d3a84b19b34b3bace57 rdf:first N2c60cb24d84d475497d898ff738abdcc
97 rdf:rest Nf633114683e7434bb608debfad1ddfab
98 N6ed7dbff815a4a28a8069a0588aadce7 schema:name Springer Nature - SN SciGraph project
99 rdf:type schema:Organization
100 N7462c025c2144c6e80515ed24391927a rdf:first N2d2ffe67e87c4df4b62074732b9f19dd
101 rdf:rest rdf:nil
102 N849d55385d814a65a5e4e62b66d47351 rdf:first Ne2e2b21298944e8cabce268523a13239
103 rdf:rest Nd4b03df0080243c8a81ebae7257faf6c
104 N90c6b5bedec648389cec6c1a81d8e9af schema:name doi
105 schema:value 10.1186/s13662-019-2030-7
106 rdf:type schema:PropertyValue
107 Nab842091f2814439be55f91e94d5c5a9 schema:issueNumber 1
108 rdf:type schema:PublicationIssue
109 Nce1a83050a504c9182f321081faa29e9 schema:affiliation https://www.grid.ac/institutes/grid.412621.2
110 schema:familyName Rafiq
111 schema:givenName Muhammad
112 rdf:type schema:Person
113 Nd4b03df0080243c8a81ebae7257faf6c rdf:first N3df2a11379d04e79ac22cdf2c7768973
114 rdf:rest N688be7a9e3ee4d3a84b19b34b3bace57
115 Ne13e4fb7d1bc46f39ceb62b1a9704a48 schema:affiliation https://www.grid.ac/institutes/grid.448709.6
116 schema:familyName Mohyud-Din
117 schema:givenName Syed Tauseef
118 rdf:type schema:Person
119 Ne2e2b21298944e8cabce268523a13239 schema:affiliation https://www.grid.ac/institutes/grid.448709.6
120 schema:familyName Bibi
121 schema:givenName Sadaf
122 rdf:type schema:Person
123 Nf633114683e7434bb608debfad1ddfab rdf:first Ne13e4fb7d1bc46f39ceb62b1a9704a48
124 rdf:rest N254415ea07834740b7a41f85e975b9f5
125 Nfeecf1bd8ec0471481de7ebffb5c519e schema:name readcube_id
126 schema:value 9055645e06584b9ba3266c89d04f36604f3f5e4244a062331fb69f850438f050
127 rdf:type schema:PropertyValue
128 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
129 schema:name Mathematical Sciences
130 rdf:type schema:DefinedTerm
131 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
132 schema:name Pure Mathematics
133 rdf:type schema:DefinedTerm
134 sg:journal.1052613 schema:issn 1687-1839
135 1687-1847
136 schema:name Advances in Difference Equations
137 rdf:type schema:Periodical
138 sg:pub.10.1007/978-3-642-18101-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041164416
139 https://doi.org/10.1007/978-3-642-18101-6
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/s10092-015-0158-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052525009
142 https://doi.org/10.1007/s10092-015-0158-8
143 rdf:type schema:CreativeWork
144 sg:pub.10.1007/s11071-015-2117-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1042304187
145 https://doi.org/10.1007/s11071-015-2117-y
146 rdf:type schema:CreativeWork
147 sg:pub.10.1007/s11071-015-2318-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008574063
148 https://doi.org/10.1007/s11071-015-2318-4
149 rdf:type schema:CreativeWork
150 sg:pub.10.1007/s11071-018-4367-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1104249865
151 https://doi.org/10.1007/s11071-018-4367-y
152 rdf:type schema:CreativeWork
153 sg:pub.10.1007/s11082-016-0681-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044202628
154 https://doi.org/10.1007/s11082-016-0681-0
155 rdf:type schema:CreativeWork
156 sg:pub.10.1007/s11082-017-0895-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053825309
157 https://doi.org/10.1007/s11082-017-0895-9
158 rdf:type schema:CreativeWork
159 sg:pub.10.1007/s11082-017-1195-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092292123
160 https://doi.org/10.1007/s11082-017-1195-0
161 rdf:type schema:CreativeWork
162 sg:pub.10.1007/s40324-015-0059-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001906343
163 https://doi.org/10.1007/s40324-015-0059-4
164 rdf:type schema:CreativeWork
165 sg:pub.10.1140/epjp/i2017-11306-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053901619
166 https://doi.org/10.1140/epjp/i2017-11306-3
167 rdf:type schema:CreativeWork
168 sg:pub.10.1140/epjp/i2017-11354-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083881918
169 https://doi.org/10.1140/epjp/i2017-11354-7
170 rdf:type schema:CreativeWork
171 sg:pub.10.1140/epjp/i2018-11934-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1101133640
172 https://doi.org/10.1140/epjp/i2018-11934-y
173 rdf:type schema:CreativeWork
174 sg:pub.10.1140/epjp/i2018-12081-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105551688
175 https://doi.org/10.1140/epjp/i2018-12081-3
176 rdf:type schema:CreativeWork
177 sg:pub.10.1186/2193-1801-3-692 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036538816
178 https://doi.org/10.1186/2193-1801-3-692
179 rdf:type schema:CreativeWork
180 sg:pub.10.1186/s13662-018-1684-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1105296487
181 https://doi.org/10.1186/s13662-018-1684-x
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1002/mma.3533 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010509198
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1002/mma.4309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043983117
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/j.amc.2005.03.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032517242
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/j.amc.2007.08.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043534016
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/j.amc.2008.08.052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039307767
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/j.amc.2017.08.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091592702
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1016/j.amc.2018.04.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103856439
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1016/j.cam.2014.01.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012708443
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1016/j.cam.2017.03.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084063239
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1016/j.camwa.2006.12.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047454343
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1016/j.chaos.2005.10.100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014504177
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1016/j.chaos.2006.03.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032733241
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1016/j.chaos.2006.10.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046333771
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1016/j.chaos.2007.01.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011234037
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1016/j.chaos.2018.06.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105086926
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1016/j.cpc.2016.11.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044072934
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1016/j.ijleo.2017.01.078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083541964
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1016/j.ijleo.2017.02.087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084080472
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1016/j.physleta.2011.04.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009376193
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1080/16583655.2018.1515303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106434340
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1080/17455030.2016.1205237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051505535
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1080/17455030.2017.1296983 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090837076
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1080/17455030.2018.1462541 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103672311
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1108/09615531211208042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011390805
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1155/2011/218216 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015330502
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1155/2014/156483 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050258060
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1177/1077546316687936 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083416412
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1515/ijnsns.2010.11.2.87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014189464
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1515/math-2015-0081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012301969
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1515/phys-2016-0010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046680970
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1515/tmj-2017-0010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083835260
244 rdf:type schema:CreativeWork
245 https://doi.org/10.2298/tsci160111018a schema:sameAs https://app.dimensions.ai/details/publication/pub.1018925595
246 rdf:type schema:CreativeWork
247 https://doi.org/10.24200/sci.2016.3873 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091254324
248 rdf:type schema:CreativeWork
249 https://doi.org/10.5897/sre2013.5772 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051676255
250 rdf:type schema:CreativeWork
251 https://doi.org/10.7763/ijmo.2013.v3.297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074038906
252 rdf:type schema:CreativeWork
253 https://www.grid.ac/institutes/grid.412621.2 schema:alternateName Quaid-i-Azam University
254 schema:name Department of Mathematics, COMSATS University Islamabad (CUI), Wah Campus, Pakistan
255 rdf:type schema:Organization
256 https://www.grid.ac/institutes/grid.412892.4 schema:alternateName Taibah University
257 schema:name Department of Mathematics, Faculty of Science, Taibah University, Al Medina, Kingdom of Saudi Arabia
258 rdf:type schema:Organization
259 https://www.grid.ac/institutes/grid.440530.6 schema:alternateName Hazara University
260 schema:name Department of Mathematics and Statistics, Hazara University, Mansehra, Pakistan
261 rdf:type schema:Organization
262 https://www.grid.ac/institutes/grid.448709.6 schema:alternateName HITEC University
263 schema:name Department of Mathematics, Faculty of Sciences, HITEC University, Taxila Cantt, Pakistan
264 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...