Galerkin method for the scattering problem of strip gratings View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Enxi Zheng, Yujie Wang

ABSTRACT

In this paper, the diffraction problem of periodic strip gratings is considered. The previous study of this problem usually concentrated on the numerical method; however, we try to analyze this problem and the convergence of the numerical solution from the mathematical point of view in this work. By use of the Dirichlet to Neumann operator on the slit between two strips, we reformulate the problem to an operator equation. The well-posedness of the solution to the operator equation is proved. The Galerkin method is applied to solve this operator equation and the convergence result of the numerical solution is also derived. Finally, some numerical experiments are presented to show the effectiveness of our method and verify the theoretical convergence result. More... »

PAGES

60

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13662-019-1999-2

DOI

http://dx.doi.org/10.1186/s13662-019-1999-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112119177


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Dalian Maritime University", 
          "id": "https://www.grid.ac/institutes/grid.440686.8", 
          "name": [
            "School of Science, Dalian Maritime University, Dalian, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zheng", 
        "givenName": "Enxi", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dalian Maritime University", 
          "id": "https://www.grid.ac/institutes/grid.440686.8", 
          "name": [
            "School of Science, Dalian Maritime University, Dalian, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Yujie", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0030-4018(93)90357-b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020397363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0030-4018(93)90357-b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020397363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.optcom.2010.06.044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033715275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0030-4018(97)00388-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036349590"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0030-4018(99)00192-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049015563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-81500-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050747321", 
          "https://doi.org/10.1007/978-3-642-81500-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-81500-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050747321", 
          "https://doi.org/10.1007/978-3-642-81500-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.optcom.2005.06.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052121222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/8.192125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061232511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/8.793318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061234863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tap.1987.1144067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061494320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tap.2013.2273213", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061501012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1112/s0025579314000278", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062056932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10915-018-0752-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104594600", 
          "https://doi.org/10.1007/s10915-018-0752-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9780898717594", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1108138544"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "In this paper, the diffraction problem of periodic strip gratings is considered. The previous study of this problem usually concentrated on the numerical method; however, we try to analyze this problem and the convergence of the numerical solution from the mathematical point of view in this work. By use of the Dirichlet to Neumann operator on the slit between two strips, we reformulate the problem to an operator equation. The well-posedness of the solution to the operator equation is proved. The Galerkin method is applied to solve this operator equation and the convergence result of the numerical solution is also derived. Finally, some numerical experiments are presented to show the effectiveness of our method and verify the theoretical convergence result.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s13662-019-1999-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1052613", 
        "issn": [
          "1687-1839", 
          "1687-1847"
        ], 
        "name": "Advances in Difference Equations", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2019"
      }
    ], 
    "name": "Galerkin method for the scattering problem of strip gratings", 
    "pagination": "60", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "50aad0ab215c9df4f2f324a2ca965c795bbcc54017c7a6d0957ff294e3729109"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13662-019-1999-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112119177"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13662-019-1999-2", 
      "https://app.dimensions.ai/details/publication/pub.1112119177"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000336_0000000336/records_94790_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs13662-019-1999-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13662-019-1999-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13662-019-1999-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13662-019-1999-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13662-019-1999-2'


 

This table displays all metadata directly associated to this object as RDF triples.

107 TRIPLES      21 PREDICATES      40 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13662-019-1999-2 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author N6856a27ea7994a73b5e4bade11af595d
4 schema:citation sg:pub.10.1007/978-3-642-81500-3
5 sg:pub.10.1007/s10915-018-0752-4
6 https://doi.org/10.1016/0030-4018(93)90357-b
7 https://doi.org/10.1016/j.optcom.2005.06.018
8 https://doi.org/10.1016/j.optcom.2010.06.044
9 https://doi.org/10.1016/s0030-4018(97)00388-x
10 https://doi.org/10.1016/s0030-4018(99)00192-3
11 https://doi.org/10.1109/8.192125
12 https://doi.org/10.1109/8.793318
13 https://doi.org/10.1109/tap.1987.1144067
14 https://doi.org/10.1109/tap.2013.2273213
15 https://doi.org/10.1112/s0025579314000278
16 https://doi.org/10.1137/1.9780898717594
17 schema:datePublished 2019-12
18 schema:datePublishedReg 2019-12-01
19 schema:description In this paper, the diffraction problem of periodic strip gratings is considered. The previous study of this problem usually concentrated on the numerical method; however, we try to analyze this problem and the convergence of the numerical solution from the mathematical point of view in this work. By use of the Dirichlet to Neumann operator on the slit between two strips, we reformulate the problem to an operator equation. The well-posedness of the solution to the operator equation is proved. The Galerkin method is applied to solve this operator equation and the convergence result of the numerical solution is also derived. Finally, some numerical experiments are presented to show the effectiveness of our method and verify the theoretical convergence result.
20 schema:genre research_article
21 schema:inLanguage en
22 schema:isAccessibleForFree true
23 schema:isPartOf N7b07881c40184a719ba9e3f1a6a7f7b5
24 N9c9f330cce5e420eae55c4c0a3d4e20b
25 sg:journal.1052613
26 schema:name Galerkin method for the scattering problem of strip gratings
27 schema:pagination 60
28 schema:productId N0f58bd248571416690c49a1a6f9fba3e
29 N932bb59f2c054363804fe42651cd2ccc
30 Ne8a01e8e727a425289d46c4b65595790
31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112119177
32 https://doi.org/10.1186/s13662-019-1999-2
33 schema:sdDatePublished 2019-04-11T09:05
34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
35 schema:sdPublisher Nd861017eae934ca387bceab96cbe0c55
36 schema:url https://link.springer.com/10.1186%2Fs13662-019-1999-2
37 sgo:license sg:explorer/license/
38 sgo:sdDataset articles
39 rdf:type schema:ScholarlyArticle
40 N0f58bd248571416690c49a1a6f9fba3e schema:name doi
41 schema:value 10.1186/s13662-019-1999-2
42 rdf:type schema:PropertyValue
43 N6856a27ea7994a73b5e4bade11af595d rdf:first Ne4bcc43fb2914a3faef9be533da2b4af
44 rdf:rest Nd5a4cb348b5142dabaf3c93876bf9b7d
45 N7b07881c40184a719ba9e3f1a6a7f7b5 schema:issueNumber 1
46 rdf:type schema:PublicationIssue
47 N932bb59f2c054363804fe42651cd2ccc schema:name readcube_id
48 schema:value 50aad0ab215c9df4f2f324a2ca965c795bbcc54017c7a6d0957ff294e3729109
49 rdf:type schema:PropertyValue
50 N9c9f330cce5e420eae55c4c0a3d4e20b schema:volumeNumber 2019
51 rdf:type schema:PublicationVolume
52 Nd5a4cb348b5142dabaf3c93876bf9b7d rdf:first Neecc6cd07fe3479f90d34486acdcbbb8
53 rdf:rest rdf:nil
54 Nd861017eae934ca387bceab96cbe0c55 schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 Ne4bcc43fb2914a3faef9be533da2b4af schema:affiliation https://www.grid.ac/institutes/grid.440686.8
57 schema:familyName Zheng
58 schema:givenName Enxi
59 rdf:type schema:Person
60 Ne8a01e8e727a425289d46c4b65595790 schema:name dimensions_id
61 schema:value pub.1112119177
62 rdf:type schema:PropertyValue
63 Neecc6cd07fe3479f90d34486acdcbbb8 schema:affiliation https://www.grid.ac/institutes/grid.440686.8
64 schema:familyName Wang
65 schema:givenName Yujie
66 rdf:type schema:Person
67 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
68 schema:name Mathematical Sciences
69 rdf:type schema:DefinedTerm
70 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
71 schema:name Numerical and Computational Mathematics
72 rdf:type schema:DefinedTerm
73 sg:journal.1052613 schema:issn 1687-1839
74 1687-1847
75 schema:name Advances in Difference Equations
76 rdf:type schema:Periodical
77 sg:pub.10.1007/978-3-642-81500-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050747321
78 https://doi.org/10.1007/978-3-642-81500-3
79 rdf:type schema:CreativeWork
80 sg:pub.10.1007/s10915-018-0752-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104594600
81 https://doi.org/10.1007/s10915-018-0752-4
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1016/0030-4018(93)90357-b schema:sameAs https://app.dimensions.ai/details/publication/pub.1020397363
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1016/j.optcom.2005.06.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052121222
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1016/j.optcom.2010.06.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033715275
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1016/s0030-4018(97)00388-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1036349590
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1016/s0030-4018(99)00192-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049015563
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1109/8.192125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061232511
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1109/8.793318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061234863
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1109/tap.1987.1144067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061494320
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1109/tap.2013.2273213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061501012
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1112/s0025579314000278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062056932
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1137/1.9780898717594 schema:sameAs https://app.dimensions.ai/details/publication/pub.1108138544
104 rdf:type schema:CreativeWork
105 https://www.grid.ac/institutes/grid.440686.8 schema:alternateName Dalian Maritime University
106 schema:name School of Science, Dalian Maritime University, Dalian, P.R. China
107 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...