Discrete Fourier transform based frequency characteristics of iterative learning control for linear discrete-time systems View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Xiaohui Li, Xiaoe Ruan

ABSTRACT

For discrete-time iterative learning control systems, the discrete Fourier transform (DFT) is a powerful technique for frequency analysis, and Toeplitz matrices are a typical tool for the system input–output transmission. This paper first exploits z-transform and DFT-based frequency properties for iterative learning control systems and studies the convergence property of a Toeplitz matrix to the power of iteration index. The exploitation exhibits that for the finite-length discrete-time iterative learning control systems, the time-domain convolution theorem for the z-transform and DFT is no longer true, and the Toeplitz matrix to the power of iteration index converges if and only if the identical diagonal element lies in the unit circle. Then, by considering the DFT to a finite-length sequence as a linear transform, it is easy to equivalently reform the input–output equation of linear discrete time-invariant and time-varying ILC systems as an algebraic discrete-frequency equation. Thus the derivative-type (D-type) iterative learning control (ILC) converges in a discrete-frequency domain if and only if it converges in a discrete-time domain. Numerical simulations are carried out to exhibit the validity and effectiveness. More... »

PAGES

59

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13662-019-1998-3

DOI

http://dx.doi.org/10.1186/s13662-019-1998-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112086502


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Xi'an Jiaotong University", 
          "id": "https://www.grid.ac/institutes/grid.43169.39", 
          "name": [
            "School of Mathematics and Statistics, Xi\u2019an Jiaotong University, Xi\u2019an, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Xiaohui", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Xi'an Jiaotong University", 
          "id": "https://www.grid.ac/institutes/grid.43169.39", 
          "name": [
            "School of Mathematics and Statistics, Xi\u2019an Jiaotong University, Xi\u2019an, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ruan", 
        "givenName": "Xiaoe", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/rnc.1338", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002351018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13662-016-1047-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003370150", 
          "https://doi.org/10.1186/s13662-016-1047-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13662-016-1047-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003370150", 
          "https://doi.org/10.1186/s13662-016-1047-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/rob.4620010203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003629477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sysconle.2014.04.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003891921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.9746/sicetr1965.14.706", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014629600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00207721.2013.793781", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015778583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ifacol.2016.07.946", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016352057"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0005-1098(01)00154-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018585757"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0005-1098(01)00197-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023785532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jprocont.2014.04.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025316388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.conengprac.2016.04.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028163378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00207170310001638614", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029389457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.automatica.2005.01.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031180660"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/acs.1209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031417832"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11633-015-0883-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032201437", 
          "https://doi.org/10.1007/s11633-015-0883-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00207170210159122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038702422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/acs.1228", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048581080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jprocont.2009.09.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048687334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1051071745", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-981-4585-60-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051071745", 
          "https://doi.org/10.1007/978-981-4585-60-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-981-4585-60-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051071745", 
          "https://doi.org/10.1007/978-981-4585-60-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00207179.2011.574236", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053434621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-cta.2014.1367", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056824251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/ip-cta:19960244", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056846702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/ip-cta:20041125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056847444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/imamci/dnw031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059687734"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mcs.2006.1636313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061397412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tac.2015.2458491", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061479670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmcc.2007.905759", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061798022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.3072149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062100797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.3072149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062100797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.automatica.2016.12.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074211911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.automatica.2016.12.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074211911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.automatica.2016.12.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074211911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13662-017-1103-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083881920", 
          "https://doi.org/10.1186/s13662-017-1103-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13662-017-1103-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083881920", 
          "https://doi.org/10.1186/s13662-017-1103-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13662-017-1140-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084252687", 
          "https://doi.org/10.1186/s13662-017-1140-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13662-017-1140-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084252687", 
          "https://doi.org/10.1186/s13662-017-1140-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/acs.2767", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084814604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cdc.1985.268737", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086203041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.4037271", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090756622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cdc.2006.377582", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093972095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jas.2018.7511123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105433654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10236198.2018.1529762", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107429936"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "For discrete-time iterative learning control systems, the discrete Fourier transform (DFT) is a powerful technique for frequency analysis, and Toeplitz matrices are a typical tool for the system input\u2013output transmission. This paper first exploits z-transform and DFT-based frequency properties for iterative learning control systems and studies the convergence property of a Toeplitz matrix to the power of iteration index. The exploitation exhibits that for the finite-length discrete-time iterative learning control systems, the time-domain convolution theorem for the z-transform and DFT is no longer true, and the Toeplitz matrix to the power of iteration index converges if and only if the identical diagonal element lies in the unit circle. Then, by considering the DFT to a finite-length sequence as a linear transform, it is easy to equivalently reform the input\u2013output equation of linear discrete time-invariant and time-varying ILC systems as an algebraic discrete-frequency equation. Thus the derivative-type (D-type) iterative learning control (ILC) converges in a discrete-frequency domain if and only if it converges in a discrete-time domain. Numerical simulations are carried out to exhibit the validity and effectiveness.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s13662-019-1998-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1052613", 
        "issn": [
          "1687-1839", 
          "1687-1847"
        ], 
        "name": "Advances in Difference Equations", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2019"
      }
    ], 
    "name": "Discrete Fourier transform based frequency characteristics of iterative learning control for linear discrete-time systems", 
    "pagination": "59", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "185346dd514220fd01ddd0892cffa1f290aef2ed0c7892b2f895e7216b1a3252"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13662-019-1998-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112086502"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13662-019-1998-3", 
      "https://app.dimensions.ai/details/publication/pub.1112086502"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000335_0000000335/records_125267_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs13662-019-1998-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13662-019-1998-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13662-019-1998-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13662-019-1998-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13662-019-1998-3'


 

This table displays all metadata directly associated to this object as RDF triples.

184 TRIPLES      21 PREDICATES      65 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13662-019-1998-3 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author Nb14a986d81464baa88932e621db70cb0
4 schema:citation sg:pub.10.1007/978-981-4585-60-6
5 sg:pub.10.1007/s11633-015-0883-0
6 sg:pub.10.1186/s13662-016-1047-4
7 sg:pub.10.1186/s13662-017-1103-8
8 sg:pub.10.1186/s13662-017-1140-3
9 https://app.dimensions.ai/details/publication/pub.1051071745
10 https://doi.org/10.1002/acs.1209
11 https://doi.org/10.1002/acs.1228
12 https://doi.org/10.1002/acs.2767
13 https://doi.org/10.1002/rnc.1338
14 https://doi.org/10.1002/rob.4620010203
15 https://doi.org/10.1016/j.automatica.2005.01.019
16 https://doi.org/10.1016/j.automatica.2016.12.030
17 https://doi.org/10.1016/j.conengprac.2016.04.011
18 https://doi.org/10.1016/j.ifacol.2016.07.946
19 https://doi.org/10.1016/j.jprocont.2009.09.006
20 https://doi.org/10.1016/j.jprocont.2014.04.013
21 https://doi.org/10.1016/j.sysconle.2014.04.009
22 https://doi.org/10.1016/s0005-1098(01)00154-6
23 https://doi.org/10.1016/s0005-1098(01)00197-2
24 https://doi.org/10.1049/iet-cta.2014.1367
25 https://doi.org/10.1049/ip-cta:19960244
26 https://doi.org/10.1049/ip-cta:20041125
27 https://doi.org/10.1080/00207170210159122
28 https://doi.org/10.1080/00207170310001638614
29 https://doi.org/10.1080/00207179.2011.574236
30 https://doi.org/10.1080/00207721.2013.793781
31 https://doi.org/10.1080/10236198.2018.1529762
32 https://doi.org/10.1093/imamci/dnw031
33 https://doi.org/10.1109/cdc.1985.268737
34 https://doi.org/10.1109/cdc.2006.377582
35 https://doi.org/10.1109/jas.2018.7511123
36 https://doi.org/10.1109/mcs.2006.1636313
37 https://doi.org/10.1109/tac.2015.2458491
38 https://doi.org/10.1109/tsmcc.2007.905759
39 https://doi.org/10.1115/1.3072149
40 https://doi.org/10.1115/1.4037271
41 https://doi.org/10.9746/sicetr1965.14.706
42 schema:datePublished 2019-12
43 schema:datePublishedReg 2019-12-01
44 schema:description For discrete-time iterative learning control systems, the discrete Fourier transform (DFT) is a powerful technique for frequency analysis, and Toeplitz matrices are a typical tool for the system input–output transmission. This paper first exploits z-transform and DFT-based frequency properties for iterative learning control systems and studies the convergence property of a Toeplitz matrix to the power of iteration index. The exploitation exhibits that for the finite-length discrete-time iterative learning control systems, the time-domain convolution theorem for the z-transform and DFT is no longer true, and the Toeplitz matrix to the power of iteration index converges if and only if the identical diagonal element lies in the unit circle. Then, by considering the DFT to a finite-length sequence as a linear transform, it is easy to equivalently reform the input–output equation of linear discrete time-invariant and time-varying ILC systems as an algebraic discrete-frequency equation. Thus the derivative-type (D-type) iterative learning control (ILC) converges in a discrete-frequency domain if and only if it converges in a discrete-time domain. Numerical simulations are carried out to exhibit the validity and effectiveness.
45 schema:genre research_article
46 schema:inLanguage en
47 schema:isAccessibleForFree true
48 schema:isPartOf N07ed2fa485694eb2a964a04247e8b4d9
49 N238ac0da274c45f69319716d97433d41
50 sg:journal.1052613
51 schema:name Discrete Fourier transform based frequency characteristics of iterative learning control for linear discrete-time systems
52 schema:pagination 59
53 schema:productId N2cbd40b944e249e0ae1b68522c1b0d00
54 N8f1c0b18a0ba47d181797805f69203c9
55 Nb80dfa04c7f0468b881c2d8a7a1a5c81
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112086502
57 https://doi.org/10.1186/s13662-019-1998-3
58 schema:sdDatePublished 2019-04-11T09:05
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher Na48d9ceec5b14007b0b0d37d0ba149a4
61 schema:url https://link.springer.com/10.1186%2Fs13662-019-1998-3
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N07ed2fa485694eb2a964a04247e8b4d9 schema:issueNumber 1
66 rdf:type schema:PublicationIssue
67 N238ac0da274c45f69319716d97433d41 schema:volumeNumber 2019
68 rdf:type schema:PublicationVolume
69 N2cbd40b944e249e0ae1b68522c1b0d00 schema:name doi
70 schema:value 10.1186/s13662-019-1998-3
71 rdf:type schema:PropertyValue
72 N8f1c0b18a0ba47d181797805f69203c9 schema:name dimensions_id
73 schema:value pub.1112086502
74 rdf:type schema:PropertyValue
75 N9f38e2f721554192bc91e671510adf75 schema:affiliation https://www.grid.ac/institutes/grid.43169.39
76 schema:familyName Li
77 schema:givenName Xiaohui
78 rdf:type schema:Person
79 Na48d9ceec5b14007b0b0d37d0ba149a4 schema:name Springer Nature - SN SciGraph project
80 rdf:type schema:Organization
81 Nb14a986d81464baa88932e621db70cb0 rdf:first N9f38e2f721554192bc91e671510adf75
82 rdf:rest Nea55623b80244a0c9053e99a1e7e2e52
83 Nb80dfa04c7f0468b881c2d8a7a1a5c81 schema:name readcube_id
84 schema:value 185346dd514220fd01ddd0892cffa1f290aef2ed0c7892b2f895e7216b1a3252
85 rdf:type schema:PropertyValue
86 Nea55623b80244a0c9053e99a1e7e2e52 rdf:first Nec385c86412d48128eee23c18a83a520
87 rdf:rest rdf:nil
88 Nec385c86412d48128eee23c18a83a520 schema:affiliation https://www.grid.ac/institutes/grid.43169.39
89 schema:familyName Ruan
90 schema:givenName Xiaoe
91 rdf:type schema:Person
92 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
93 schema:name Mathematical Sciences
94 rdf:type schema:DefinedTerm
95 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
96 schema:name Applied Mathematics
97 rdf:type schema:DefinedTerm
98 sg:journal.1052613 schema:issn 1687-1839
99 1687-1847
100 schema:name Advances in Difference Equations
101 rdf:type schema:Periodical
102 sg:pub.10.1007/978-981-4585-60-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051071745
103 https://doi.org/10.1007/978-981-4585-60-6
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/s11633-015-0883-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032201437
106 https://doi.org/10.1007/s11633-015-0883-0
107 rdf:type schema:CreativeWork
108 sg:pub.10.1186/s13662-016-1047-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003370150
109 https://doi.org/10.1186/s13662-016-1047-4
110 rdf:type schema:CreativeWork
111 sg:pub.10.1186/s13662-017-1103-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083881920
112 https://doi.org/10.1186/s13662-017-1103-8
113 rdf:type schema:CreativeWork
114 sg:pub.10.1186/s13662-017-1140-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084252687
115 https://doi.org/10.1186/s13662-017-1140-3
116 rdf:type schema:CreativeWork
117 https://app.dimensions.ai/details/publication/pub.1051071745 schema:CreativeWork
118 https://doi.org/10.1002/acs.1209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031417832
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1002/acs.1228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048581080
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1002/acs.2767 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084814604
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1002/rnc.1338 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002351018
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1002/rob.4620010203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003629477
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.automatica.2005.01.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031180660
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.automatica.2016.12.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074211911
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.conengprac.2016.04.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028163378
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.ifacol.2016.07.946 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016352057
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.jprocont.2009.09.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048687334
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.jprocont.2014.04.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025316388
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.sysconle.2014.04.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003891921
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/s0005-1098(01)00154-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018585757
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/s0005-1098(01)00197-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023785532
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1049/iet-cta.2014.1367 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056824251
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1049/ip-cta:19960244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056846702
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1049/ip-cta:20041125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056847444
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1080/00207170210159122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038702422
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1080/00207170310001638614 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029389457
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1080/00207179.2011.574236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053434621
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1080/00207721.2013.793781 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015778583
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1080/10236198.2018.1529762 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107429936
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1093/imamci/dnw031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059687734
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1109/cdc.1985.268737 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086203041
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1109/cdc.2006.377582 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093972095
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1109/jas.2018.7511123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105433654
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1109/mcs.2006.1636313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061397412
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1109/tac.2015.2458491 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061479670
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1109/tsmcc.2007.905759 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061798022
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1115/1.3072149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062100797
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1115/1.4037271 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090756622
179 rdf:type schema:CreativeWork
180 https://doi.org/10.9746/sicetr1965.14.706 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014629600
181 rdf:type schema:CreativeWork
182 https://www.grid.ac/institutes/grid.43169.39 schema:alternateName Xi'an Jiaotong University
183 schema:name School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an, P.R. China
184 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...