Sliding-mode H∞ synchronization for complex dynamical network systems with Markovian jump parameters and time-varying delays View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Nannan Ma, Zhibin Liu, Lin Chen

ABSTRACT

This paper is devoted to the investigation of the sliding-mode controller design problem for a class of complex dynamical network systems with Markovian jump parameters and time-varying delays. On the basis of an appropriate Lyapunov–Krasovskii functional, a set of new sufficient conditions is developed which not only guarantee the stochastic stability of the sliding-mode dynamics, but also satisfy the H∞ performance. Next, an integral sliding surface is designed to guarantee that the closed-loop error system reach the designed sliding surface in a finite time. Finally, an example is given to illustrate the validity of the obtained theoretical results. More... »

PAGES

48

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13662-019-1987-6

DOI

http://dx.doi.org/10.1186/s13662-019-1987-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111914677


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Southwest Petroleum University", 
          "id": "https://www.grid.ac/institutes/grid.437806.e", 
          "name": [
            "School of Science, Southwest Petroleum University, Chengdu, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ma", 
        "givenName": "Nannan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Southwest Petroleum University", 
          "id": "https://www.grid.ac/institutes/grid.437806.e", 
          "name": [
            "School of Science, Southwest Petroleum University, Chengdu, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Zhibin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Southwest Petroleum University", 
          "id": "https://www.grid.ac/institutes/grid.437806.e", 
          "name": [
            "School of Science, Southwest Petroleum University, Chengdu, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Lin", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.neucom.2016.08.053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003269925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2016.08.053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003269925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35065725", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005249327", 
          "https://doi.org/10.1038/35065725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35065725", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005249327", 
          "https://doi.org/10.1038/35065725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amc.2012.07.042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007539024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cnsns.2012.08.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007960179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/43601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009550067", 
          "https://doi.org/10.1038/43601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/43601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009550067", 
          "https://doi.org/10.1038/43601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.286.5439.509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010080128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2014/581971", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010298437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2015.01.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012440453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-011-0092-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012570566", 
          "https://doi.org/10.1007/s11071-011-0092-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-4371(00)00018-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016331444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-015-2416-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020739467", 
          "https://doi.org/10.1007/s11071-015-2416-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.automatica.2014.10.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021934328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2014.02.048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026201808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00207179.2014.1002110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029070405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/rnc.1725", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030184061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.automatica.2009.05.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031463925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00207721.2016.1216200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032120535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-012-0359-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037644280", 
          "https://doi.org/10.1007/s11071-012-0359-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-012-0359-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037644280", 
          "https://doi.org/10.1007/s11071-012-0359-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/30918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041985305", 
          "https://doi.org/10.1038/30918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/30918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041985305", 
          "https://doi.org/10.1038/30918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jfranklin.2011.09.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045502627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1687-1847-2013-195", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048054788", 
          "https://doi.org/10.1186/1687-1847-2013-195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1687-1847-2013-195", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048054788", 
          "https://doi.org/10.1186/1687-1847-2013-195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.automatica.2016.10.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049459645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.automatica.2006.02.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050929961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-cta.2013.0083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056823709"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/81.974874", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061237423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tac.1977.1101446", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061472038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-017-3400-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083892865", 
          "https://doi.org/10.1007/s11071-017-3400-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-017-3400-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083892865", 
          "https://doi.org/10.1007/s11071-017-3400-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0252-9602(17)30008-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084044039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amc.2017.02.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084057210"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.automatica.2017.01.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084060643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tac.2017.2687048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084204697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.automatica.2017.04.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085383840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neunet.2017.06.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090571660"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jfranklin.2017.07.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090858616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2017.07.053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091399840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amc.2017.09.042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092547646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ccdc.2012.6243020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093993099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nahs.2017.12.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100726488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nahs.2017.12.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100726488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2018.03.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101722026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nahs.2018.04.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103827620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2018.03.071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103955991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13662-018-1666-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105016650", 
          "https://doi.org/10.1186/s13662-018-1666-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13662-018-1666-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105016650", 
          "https://doi.org/10.1186/s13662-018-1666-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jfranklin.2018.07.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106226020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmc.2018.2867100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106974386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnnls.2018.2876726", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109917723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-018-4675-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110282304", 
          "https://doi.org/10.1007/s11071-018-4675-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-018-4675-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110282304", 
          "https://doi.org/10.1007/s11071-018-4675-2"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "This paper is devoted to the investigation of the sliding-mode controller design problem for a class of complex dynamical network systems with Markovian jump parameters and time-varying delays. On the basis of an appropriate Lyapunov\u2013Krasovskii functional, a set of new sufficient conditions is developed which not only guarantee the stochastic stability of the sliding-mode dynamics, but also satisfy the H\u221e performance. Next, an integral sliding surface is designed to guarantee that the closed-loop error system reach the designed sliding surface in a finite time. Finally, an example is given to illustrate the validity of the obtained theoretical results.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s13662-019-1987-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1052613", 
        "issn": [
          "1687-1839", 
          "1687-1847"
        ], 
        "name": "Advances in Difference Equations", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2019"
      }
    ], 
    "name": "Sliding-mode H\u221e synchronization for complex dynamical network systems with Markovian jump parameters and time-varying delays", 
    "pagination": "48", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a322f6741c273963c2a07c0baa95feb960364219a6ee841df1401f7fed65bc93"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13662-019-1987-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111914677"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13662-019-1987-6", 
      "https://app.dimensions.ai/details/publication/pub.1111914677"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000329_0000000329/records_74667_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs13662-019-1987-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13662-019-1987-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13662-019-1987-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13662-019-1987-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13662-019-1987-6'


 

This table displays all metadata directly associated to this object as RDF triples.

220 TRIPLES      21 PREDICATES      73 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13662-019-1987-6 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author N57cbb59ef8614f20abc9f3347cb1243b
4 schema:citation sg:pub.10.1007/s11071-011-0092-5
5 sg:pub.10.1007/s11071-012-0359-5
6 sg:pub.10.1007/s11071-015-2416-3
7 sg:pub.10.1007/s11071-017-3400-x
8 sg:pub.10.1007/s11071-018-4675-2
9 sg:pub.10.1038/30918
10 sg:pub.10.1038/35065725
11 sg:pub.10.1038/43601
12 sg:pub.10.1186/1687-1847-2013-195
13 sg:pub.10.1186/s13662-018-1666-z
14 https://doi.org/10.1002/rnc.1725
15 https://doi.org/10.1016/j.amc.2012.07.042
16 https://doi.org/10.1016/j.amc.2017.02.041
17 https://doi.org/10.1016/j.amc.2017.09.042
18 https://doi.org/10.1016/j.automatica.2006.02.016
19 https://doi.org/10.1016/j.automatica.2009.05.014
20 https://doi.org/10.1016/j.automatica.2014.10.008
21 https://doi.org/10.1016/j.automatica.2016.10.001
22 https://doi.org/10.1016/j.automatica.2017.01.002
23 https://doi.org/10.1016/j.automatica.2017.04.032
24 https://doi.org/10.1016/j.cnsns.2012.08.014
25 https://doi.org/10.1016/j.jfranklin.2011.09.015
26 https://doi.org/10.1016/j.jfranklin.2017.07.015
27 https://doi.org/10.1016/j.jfranklin.2018.07.018
28 https://doi.org/10.1016/j.nahs.2017.12.002
29 https://doi.org/10.1016/j.nahs.2018.04.006
30 https://doi.org/10.1016/j.neucom.2014.02.048
31 https://doi.org/10.1016/j.neucom.2015.01.001
32 https://doi.org/10.1016/j.neucom.2016.08.053
33 https://doi.org/10.1016/j.neucom.2017.07.053
34 https://doi.org/10.1016/j.neucom.2018.03.024
35 https://doi.org/10.1016/j.neucom.2018.03.071
36 https://doi.org/10.1016/j.neunet.2017.06.011
37 https://doi.org/10.1016/s0252-9602(17)30008-5
38 https://doi.org/10.1016/s0378-4371(00)00018-2
39 https://doi.org/10.1049/iet-cta.2013.0083
40 https://doi.org/10.1080/00207179.2014.1002110
41 https://doi.org/10.1080/00207721.2016.1216200
42 https://doi.org/10.1109/81.974874
43 https://doi.org/10.1109/ccdc.2012.6243020
44 https://doi.org/10.1109/tac.1977.1101446
45 https://doi.org/10.1109/tac.2017.2687048
46 https://doi.org/10.1109/tnnls.2018.2876726
47 https://doi.org/10.1109/tsmc.2018.2867100
48 https://doi.org/10.1126/science.286.5439.509
49 https://doi.org/10.1155/2014/581971
50 schema:datePublished 2019-12
51 schema:datePublishedReg 2019-12-01
52 schema:description This paper is devoted to the investigation of the sliding-mode controller design problem for a class of complex dynamical network systems with Markovian jump parameters and time-varying delays. On the basis of an appropriate Lyapunov–Krasovskii functional, a set of new sufficient conditions is developed which not only guarantee the stochastic stability of the sliding-mode dynamics, but also satisfy the H∞ performance. Next, an integral sliding surface is designed to guarantee that the closed-loop error system reach the designed sliding surface in a finite time. Finally, an example is given to illustrate the validity of the obtained theoretical results.
53 schema:genre research_article
54 schema:inLanguage en
55 schema:isAccessibleForFree true
56 schema:isPartOf N03917fffc3424e7680f9879974fbbdc5
57 N438fcb5a25b642c3abc62c463df29732
58 sg:journal.1052613
59 schema:name Sliding-mode H∞ synchronization for complex dynamical network systems with Markovian jump parameters and time-varying delays
60 schema:pagination 48
61 schema:productId N577da09af36344b6864a387b5be5a47c
62 N63e2b1d5c1b24e7c8f4c86ef8f59fd98
63 Nfb890159631c4d9d8bb22400f01121d7
64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111914677
65 https://doi.org/10.1186/s13662-019-1987-6
66 schema:sdDatePublished 2019-04-11T09:00
67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
68 schema:sdPublisher N731382bba62349e395eb5db52cd84db9
69 schema:url https://link.springer.com/10.1186%2Fs13662-019-1987-6
70 sgo:license sg:explorer/license/
71 sgo:sdDataset articles
72 rdf:type schema:ScholarlyArticle
73 N0202d87d534c4a59aa32d0ba09a2af0c schema:affiliation https://www.grid.ac/institutes/grid.437806.e
74 schema:familyName Chen
75 schema:givenName Lin
76 rdf:type schema:Person
77 N03917fffc3424e7680f9879974fbbdc5 schema:volumeNumber 2019
78 rdf:type schema:PublicationVolume
79 N21b9c3602501463da9b75e771db119de schema:affiliation https://www.grid.ac/institutes/grid.437806.e
80 schema:familyName Ma
81 schema:givenName Nannan
82 rdf:type schema:Person
83 N438fcb5a25b642c3abc62c463df29732 schema:issueNumber 1
84 rdf:type schema:PublicationIssue
85 N577da09af36344b6864a387b5be5a47c schema:name doi
86 schema:value 10.1186/s13662-019-1987-6
87 rdf:type schema:PropertyValue
88 N57cbb59ef8614f20abc9f3347cb1243b rdf:first N21b9c3602501463da9b75e771db119de
89 rdf:rest Nd40b2364cdb24a218169334b60548e4a
90 N63e2b1d5c1b24e7c8f4c86ef8f59fd98 schema:name readcube_id
91 schema:value a322f6741c273963c2a07c0baa95feb960364219a6ee841df1401f7fed65bc93
92 rdf:type schema:PropertyValue
93 N67df54ebb26f450e9d7773be18db0adf schema:affiliation https://www.grid.ac/institutes/grid.437806.e
94 schema:familyName Liu
95 schema:givenName Zhibin
96 rdf:type schema:Person
97 N731382bba62349e395eb5db52cd84db9 schema:name Springer Nature - SN SciGraph project
98 rdf:type schema:Organization
99 Nb3888738f7f24f9aab3e2f2f6f940d3a rdf:first N0202d87d534c4a59aa32d0ba09a2af0c
100 rdf:rest rdf:nil
101 Nd40b2364cdb24a218169334b60548e4a rdf:first N67df54ebb26f450e9d7773be18db0adf
102 rdf:rest Nb3888738f7f24f9aab3e2f2f6f940d3a
103 Nfb890159631c4d9d8bb22400f01121d7 schema:name dimensions_id
104 schema:value pub.1111914677
105 rdf:type schema:PropertyValue
106 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
107 schema:name Mathematical Sciences
108 rdf:type schema:DefinedTerm
109 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
110 schema:name Applied Mathematics
111 rdf:type schema:DefinedTerm
112 sg:journal.1052613 schema:issn 1687-1839
113 1687-1847
114 schema:name Advances in Difference Equations
115 rdf:type schema:Periodical
116 sg:pub.10.1007/s11071-011-0092-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012570566
117 https://doi.org/10.1007/s11071-011-0092-5
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/s11071-012-0359-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037644280
120 https://doi.org/10.1007/s11071-012-0359-5
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/s11071-015-2416-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020739467
123 https://doi.org/10.1007/s11071-015-2416-3
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/s11071-017-3400-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1083892865
126 https://doi.org/10.1007/s11071-017-3400-x
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/s11071-018-4675-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110282304
129 https://doi.org/10.1007/s11071-018-4675-2
130 rdf:type schema:CreativeWork
131 sg:pub.10.1038/30918 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041985305
132 https://doi.org/10.1038/30918
133 rdf:type schema:CreativeWork
134 sg:pub.10.1038/35065725 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005249327
135 https://doi.org/10.1038/35065725
136 rdf:type schema:CreativeWork
137 sg:pub.10.1038/43601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009550067
138 https://doi.org/10.1038/43601
139 rdf:type schema:CreativeWork
140 sg:pub.10.1186/1687-1847-2013-195 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048054788
141 https://doi.org/10.1186/1687-1847-2013-195
142 rdf:type schema:CreativeWork
143 sg:pub.10.1186/s13662-018-1666-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1105016650
144 https://doi.org/10.1186/s13662-018-1666-z
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1002/rnc.1725 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030184061
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.amc.2012.07.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007539024
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.amc.2017.02.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084057210
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.amc.2017.09.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092547646
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.automatica.2006.02.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050929961
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.automatica.2009.05.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031463925
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.automatica.2014.10.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021934328
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.automatica.2016.10.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049459645
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.automatica.2017.01.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084060643
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.automatica.2017.04.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085383840
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.cnsns.2012.08.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007960179
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.jfranklin.2011.09.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045502627
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.jfranklin.2017.07.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090858616
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.jfranklin.2018.07.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106226020
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/j.nahs.2017.12.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100726488
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/j.nahs.2018.04.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103827620
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/j.neucom.2014.02.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026201808
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.neucom.2015.01.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012440453
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.neucom.2016.08.053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003269925
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.neucom.2017.07.053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091399840
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/j.neucom.2018.03.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101722026
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/j.neucom.2018.03.071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103955991
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/j.neunet.2017.06.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090571660
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/s0252-9602(17)30008-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084044039
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/s0378-4371(00)00018-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016331444
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1049/iet-cta.2013.0083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056823709
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1080/00207179.2014.1002110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029070405
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1080/00207721.2016.1216200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032120535
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1109/81.974874 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061237423
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1109/ccdc.2012.6243020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093993099
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1109/tac.1977.1101446 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061472038
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1109/tac.2017.2687048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084204697
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1109/tnnls.2018.2876726 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109917723
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1109/tsmc.2018.2867100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106974386
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1126/science.286.5439.509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010080128
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1155/2014/581971 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010298437
217 rdf:type schema:CreativeWork
218 https://www.grid.ac/institutes/grid.437806.e schema:alternateName Southwest Petroleum University
219 schema:name School of Science, Southwest Petroleum University, Chengdu, China
220 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...