Numerical algorithm for nonlinear delayed differential systems of nth order View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Josef Rebenda, Zdeněk Šmarda

ABSTRACT

The purpose of this paper is to propose a semi-analytical technique convenient for numerical approximation of solutions of the initial value problem for p-dimensional delayed and neutral differential systems with constant, proportional and time varying delays. The algorithm is based on combination of the method of steps and the differential transformation. Convergence analysis of the presented method is given as well. Applicability of the presented approach is demonstrated in two examples. A system of pantograph type differential equations and a system of neutral functional differential equations with three types of delays are considered. The accuracy of the results is compared to those obtained by the Laplace decomposition algorithm, the residual power series method and Matlab package DDENSD. A comparison of computing time is presented, too, showing reliability and efficiency of the proposed technique. More... »

PAGES

26

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13662-019-1961-3

DOI

http://dx.doi.org/10.1186/s13662-019-1961-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111637257


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Brno University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.4994.0", 
          "name": [
            "CEITEC BUT, Brno University of Technology, Brno, Czech Republic"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rebenda", 
        "givenName": "Josef", 
        "id": "sg:person.015270206731.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015270206731.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Brno University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.4994.0", 
          "name": [
            "Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic"
          ], 
          "type": "Organization"
        }, 
        "familyName": "\u0160marda", 
        "givenName": "Zden\u011bk", 
        "id": "sg:person.012471237063.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012471237063.21"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/a:1012990608060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000907826", 
          "https://doi.org/10.1023/a:1012990608060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mma.2910", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009189743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amc.2005.07.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011634741"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2012/714681", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012404248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01630560902987576", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021299463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cnsns.2016.12.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023913588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmaa.2006.08.084", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024314325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1995423913030075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027344417", 
          "https://doi.org/10.1134/s1995423913030075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amc.2015.10.072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032221623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1687-1847-2013-69", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032580961", 
          "https://doi.org/10.1186/1687-1847-2013-69"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1687-1847-2013-69", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032580961", 
          "https://doi.org/10.1186/1687-1847-2013-69"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1033261446", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-017-1965-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033261446", 
          "https://doi.org/10.1007/978-94-017-1965-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-017-1965-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033261446", 
          "https://doi.org/10.1007/978-94-017-1965-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cam.2015.04.045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034856659"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.camwa.2010.01.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035310454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0898-1221(89)90007-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035391489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mcm.2007.09.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036854734"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1995423910020060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038182459", 
          "https://doi.org/10.1134/s1995423910020060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1995423910020060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038182459", 
          "https://doi.org/10.1134/s1995423910020060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.camwa.2005.12.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042664382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amc.2011.11.082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044332886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0898-1221(86)90018-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048662042"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1050475850", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-4342-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050475850", 
          "https://doi.org/10.1007/978-1-4612-4342-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-4342-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050475850", 
          "https://doi.org/10.1007/978-1-4612-4342-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/140975632", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062872470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.12988/ams.2016.66188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064854118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4992673", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096032375"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/acprof:oso/9780198506546.001.0001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098740242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2298/fil1715725r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101870205"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "The purpose of this paper is to propose a semi-analytical technique convenient for numerical approximation of solutions of the initial value problem for p-dimensional delayed and neutral differential systems with constant, proportional and time varying delays. The algorithm is based on combination of the method of steps and the differential transformation. Convergence analysis of the presented method is given as well. Applicability of the presented approach is demonstrated in two examples. A system of pantograph type differential equations and a system of neutral functional differential equations with three types of delays are considered. The accuracy of the results is compared to those obtained by the Laplace decomposition algorithm, the residual power series method and Matlab package DDENSD. A comparison of computing time is presented, too, showing reliability and efficiency of the proposed technique.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s13662-019-1961-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1052613", 
        "issn": [
          "1687-1839", 
          "1687-1847"
        ], 
        "name": "Advances in Difference Equations", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2019"
      }
    ], 
    "name": "Numerical algorithm for nonlinear delayed differential systems of nth order", 
    "pagination": "26", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1ba12493da9da34a05435144ac5ca636bff0312642041246d60cce03a2938c4c"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13662-019-1961-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111637257"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13662-019-1961-3", 
      "https://app.dimensions.ai/details/publication/pub.1111637257"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000325_0000000325/records_100812_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs13662-019-1961-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13662-019-1961-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13662-019-1961-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13662-019-1961-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13662-019-1961-3'


 

This table displays all metadata directly associated to this object as RDF triples.

154 TRIPLES      21 PREDICATES      54 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13662-019-1961-3 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author N152b594eb88d44c3a62d2c0be470201d
4 schema:citation sg:pub.10.1007/978-1-4612-4342-7
5 sg:pub.10.1007/978-94-017-1965-0
6 sg:pub.10.1023/a:1012990608060
7 sg:pub.10.1134/s1995423910020060
8 sg:pub.10.1134/s1995423913030075
9 sg:pub.10.1186/1687-1847-2013-69
10 https://app.dimensions.ai/details/publication/pub.1033261446
11 https://app.dimensions.ai/details/publication/pub.1050475850
12 https://doi.org/10.1002/mma.2910
13 https://doi.org/10.1016/0898-1221(86)90018-0
14 https://doi.org/10.1016/0898-1221(89)90007-2
15 https://doi.org/10.1016/j.amc.2005.07.002
16 https://doi.org/10.1016/j.amc.2011.11.082
17 https://doi.org/10.1016/j.amc.2015.10.072
18 https://doi.org/10.1016/j.cam.2015.04.045
19 https://doi.org/10.1016/j.camwa.2005.12.004
20 https://doi.org/10.1016/j.camwa.2010.01.037
21 https://doi.org/10.1016/j.cnsns.2016.12.027
22 https://doi.org/10.1016/j.jmaa.2006.08.084
23 https://doi.org/10.1016/j.mcm.2007.09.016
24 https://doi.org/10.1063/1.4992673
25 https://doi.org/10.1080/01630560902987576
26 https://doi.org/10.1093/acprof:oso/9780198506546.001.0001
27 https://doi.org/10.1137/140975632
28 https://doi.org/10.1155/2012/714681
29 https://doi.org/10.12988/ams.2016.66188
30 https://doi.org/10.2298/fil1715725r
31 schema:datePublished 2019-12
32 schema:datePublishedReg 2019-12-01
33 schema:description The purpose of this paper is to propose a semi-analytical technique convenient for numerical approximation of solutions of the initial value problem for p-dimensional delayed and neutral differential systems with constant, proportional and time varying delays. The algorithm is based on combination of the method of steps and the differential transformation. Convergence analysis of the presented method is given as well. Applicability of the presented approach is demonstrated in two examples. A system of pantograph type differential equations and a system of neutral functional differential equations with three types of delays are considered. The accuracy of the results is compared to those obtained by the Laplace decomposition algorithm, the residual power series method and Matlab package DDENSD. A comparison of computing time is presented, too, showing reliability and efficiency of the proposed technique.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree true
37 schema:isPartOf N57caae331ea1417d97004ff18d4b095b
38 Nb43360605c0a4cd38a48040341f9a351
39 sg:journal.1052613
40 schema:name Numerical algorithm for nonlinear delayed differential systems of nth order
41 schema:pagination 26
42 schema:productId N261233b99b7147a1b30d4cc8dc921a66
43 N316ce42221884e46934f017d63165f90
44 Nf504aabcbf964af2bdf6e62d83c2b061
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111637257
46 https://doi.org/10.1186/s13662-019-1961-3
47 schema:sdDatePublished 2019-04-11T08:57
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher N4bf60e14403146f78dba98a1f3285e23
50 schema:url https://link.springer.com/10.1186%2Fs13662-019-1961-3
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N152b594eb88d44c3a62d2c0be470201d rdf:first sg:person.015270206731.68
55 rdf:rest Na9ed1427370b4dec8103ed1f2fd9ba0f
56 N261233b99b7147a1b30d4cc8dc921a66 schema:name dimensions_id
57 schema:value pub.1111637257
58 rdf:type schema:PropertyValue
59 N316ce42221884e46934f017d63165f90 schema:name doi
60 schema:value 10.1186/s13662-019-1961-3
61 rdf:type schema:PropertyValue
62 N4bf60e14403146f78dba98a1f3285e23 schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 N57caae331ea1417d97004ff18d4b095b schema:volumeNumber 2019
65 rdf:type schema:PublicationVolume
66 Na9ed1427370b4dec8103ed1f2fd9ba0f rdf:first sg:person.012471237063.21
67 rdf:rest rdf:nil
68 Nb43360605c0a4cd38a48040341f9a351 schema:issueNumber 1
69 rdf:type schema:PublicationIssue
70 Nf504aabcbf964af2bdf6e62d83c2b061 schema:name readcube_id
71 schema:value 1ba12493da9da34a05435144ac5ca636bff0312642041246d60cce03a2938c4c
72 rdf:type schema:PropertyValue
73 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
74 schema:name Mathematical Sciences
75 rdf:type schema:DefinedTerm
76 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
77 schema:name Numerical and Computational Mathematics
78 rdf:type schema:DefinedTerm
79 sg:journal.1052613 schema:issn 1687-1839
80 1687-1847
81 schema:name Advances in Difference Equations
82 rdf:type schema:Periodical
83 sg:person.012471237063.21 schema:affiliation https://www.grid.ac/institutes/grid.4994.0
84 schema:familyName Šmarda
85 schema:givenName Zdeněk
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012471237063.21
87 rdf:type schema:Person
88 sg:person.015270206731.68 schema:affiliation https://www.grid.ac/institutes/grid.4994.0
89 schema:familyName Rebenda
90 schema:givenName Josef
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015270206731.68
92 rdf:type schema:Person
93 sg:pub.10.1007/978-1-4612-4342-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050475850
94 https://doi.org/10.1007/978-1-4612-4342-7
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/978-94-017-1965-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033261446
97 https://doi.org/10.1007/978-94-017-1965-0
98 rdf:type schema:CreativeWork
99 sg:pub.10.1023/a:1012990608060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000907826
100 https://doi.org/10.1023/a:1012990608060
101 rdf:type schema:CreativeWork
102 sg:pub.10.1134/s1995423910020060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038182459
103 https://doi.org/10.1134/s1995423910020060
104 rdf:type schema:CreativeWork
105 sg:pub.10.1134/s1995423913030075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027344417
106 https://doi.org/10.1134/s1995423913030075
107 rdf:type schema:CreativeWork
108 sg:pub.10.1186/1687-1847-2013-69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032580961
109 https://doi.org/10.1186/1687-1847-2013-69
110 rdf:type schema:CreativeWork
111 https://app.dimensions.ai/details/publication/pub.1033261446 schema:CreativeWork
112 https://app.dimensions.ai/details/publication/pub.1050475850 schema:CreativeWork
113 https://doi.org/10.1002/mma.2910 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009189743
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/0898-1221(86)90018-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048662042
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/0898-1221(89)90007-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035391489
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.amc.2005.07.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011634741
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.amc.2011.11.082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044332886
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.amc.2015.10.072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032221623
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.cam.2015.04.045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034856659
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.camwa.2005.12.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042664382
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.camwa.2010.01.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035310454
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.cnsns.2016.12.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023913588
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.jmaa.2006.08.084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024314325
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.mcm.2007.09.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036854734
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1063/1.4992673 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096032375
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1080/01630560902987576 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021299463
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1093/acprof:oso/9780198506546.001.0001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098740242
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1137/140975632 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062872470
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1155/2012/714681 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012404248
146 rdf:type schema:CreativeWork
147 https://doi.org/10.12988/ams.2016.66188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064854118
148 rdf:type schema:CreativeWork
149 https://doi.org/10.2298/fil1715725r schema:sameAs https://app.dimensions.ai/details/publication/pub.1101870205
150 rdf:type schema:CreativeWork
151 https://www.grid.ac/institutes/grid.4994.0 schema:alternateName Brno University of Technology
152 schema:name CEITEC BUT, Brno University of Technology, Brno, Czech Republic
153 Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic
154 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...