New results of exponential synchronization of complex network with time-varying delays View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Yiping Luo, Zhaoming Ling, Zifeng Cheng, Bifeng Zhou

ABSTRACT

In this study, we elucidated the exponential synchronization of a complex network system with time-varying delay. Then the exponential synchronization control of several types of complex network systems with time-varying delay under no requirements of delay derivable were explored. The dynamic behavior of a system node shows time-varying delays. Thus, to derive suitable conditions for the exponential synchronization of different complex network systems, we designed a linear feedback controller for linear coupling functions, using the Lyapunov stability theory, Razumikhin theorem, and Newton–Leibniz formula. The exponential damping rates for the exponential synchronization of different complex network systems were then estimated. Finally, we validated our conclusions through a numerical simulation. More... »

PAGES

10

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13662-019-1947-1

DOI

http://dx.doi.org/10.1186/s13662-019-1947-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111407373


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computation Theory and Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Hunan Institute of Engineering", 
          "id": "https://www.grid.ac/institutes/grid.459468.2", 
          "name": [
            "Hunan Institute of Engineering, Xiangtan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Luo", 
        "givenName": "Yiping", 
        "id": "sg:person.016160672045.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016160672045.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hunan Institute of Engineering", 
          "id": "https://www.grid.ac/institutes/grid.459468.2", 
          "name": [
            "Hunan Institute of Engineering, Xiangtan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ling", 
        "givenName": "Zhaoming", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hunan Institute of Engineering", 
          "id": "https://www.grid.ac/institutes/grid.459468.2", 
          "name": [
            "Hunan Institute of Engineering, Xiangtan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cheng", 
        "givenName": "Zifeng", 
        "id": "sg:person.010277120150.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010277120150.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hunan Institute of Engineering", 
          "id": "https://www.grid.ac/institutes/grid.459468.2", 
          "name": [
            "Hunan Institute of Engineering, Xiangtan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "Bifeng", 
        "id": "sg:person.012676060204.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012676060204.06"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.physleta.2011.03.052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002382406"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chaos.2016.02.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003921541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cam.2016.01.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007691496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3182/20060628-3-fr-3903.00060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008072728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neunet.2015.07.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009531423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2016.06.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009547239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2015.11.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012633184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2015.11.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012633184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2015.11.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012633184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2015.11.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012633184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physleta.2010.04.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014035429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2015.05.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017052588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2015.12.071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020027839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aml.2009.01.053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020462207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.isatra.2016.07.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021572949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apm.2015.09.092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024324361"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2014.04.052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033504430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physa.2014.06.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033782716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/337244a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035450685", 
          "https://doi.org/10.1038/337244a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cnsns.2012.03.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035629096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nahs.2015.02.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039478635"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuron.2014.06.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039943174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cnsns.2012.03.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040789021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2016.08.065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042073221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35004588", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043949443", 
          "https://doi.org/10.1038/35004588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35004588", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043949443", 
          "https://doi.org/10.1038/35004588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2016.03.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045959418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1050475850", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-4342-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050475850", 
          "https://doi.org/10.1007/978-1-4612-4342-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-4342-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050475850", 
          "https://doi.org/10.1007/978-1-4612-4342-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2016.03.049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051196212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnnls.2016.2614709", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061719295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2017.05.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085431014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2017.05.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085569919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2017.05.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085611889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amc.2017.07.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090738866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chaos.2017.08.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091224229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2017.08.071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091284815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11571-017-9455-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091890319", 
          "https://doi.org/10.1007/s11571-017-9455-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iscas.2010.5537708", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094827776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9781611970777", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098556247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcyb.2018.2799969", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101004934"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcyb.2018.2799969", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101004934"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcyb.2018.2799969", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101004934"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcyb.2018.2799969", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101004934"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "In this study, we elucidated the exponential synchronization of a complex network system with time-varying delay. Then the exponential synchronization control of several types of complex network systems with time-varying delay under no requirements of delay derivable were explored. The dynamic behavior of a system node shows time-varying delays. Thus, to derive suitable conditions for the exponential synchronization of different complex network systems, we designed a linear feedback controller for linear coupling functions, using the Lyapunov stability theory, Razumikhin theorem, and Newton\u2013Leibniz formula. The exponential damping rates for the exponential synchronization of different complex network systems were then estimated. Finally, we validated our conclusions through a numerical simulation.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s13662-019-1947-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1052613", 
        "issn": [
          "1687-1839", 
          "1687-1847"
        ], 
        "name": "Advances in Difference Equations", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2019"
      }
    ], 
    "name": "New results of exponential synchronization of complex network with time-varying delays", 
    "pagination": "10", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8bffa3ceb5d1df3b45e019cf6c1185e22ae374a54d1c8ce5388c10bb67e174b5"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13662-019-1947-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111407373"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13662-019-1947-1", 
      "https://app.dimensions.ai/details/publication/pub.1111407373"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:40", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000319_0000000319/records_11229_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs13662-019-1947-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13662-019-1947-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13662-019-1947-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13662-019-1947-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13662-019-1947-1'


 

This table displays all metadata directly associated to this object as RDF triples.

195 TRIPLES      21 PREDICATES      64 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13662-019-1947-1 schema:about anzsrc-for:08
2 anzsrc-for:0802
3 schema:author N3bbe83de192b4b25957035f39df056ab
4 schema:citation sg:pub.10.1007/978-1-4612-4342-7
5 sg:pub.10.1007/s11571-017-9455-z
6 sg:pub.10.1038/337244a0
7 sg:pub.10.1038/35004588
8 https://app.dimensions.ai/details/publication/pub.1050475850
9 https://doi.org/10.1016/j.amc.2017.07.019
10 https://doi.org/10.1016/j.aml.2009.01.053
11 https://doi.org/10.1016/j.apm.2015.09.092
12 https://doi.org/10.1016/j.cam.2016.01.017
13 https://doi.org/10.1016/j.chaos.2016.02.021
14 https://doi.org/10.1016/j.chaos.2017.08.006
15 https://doi.org/10.1016/j.cnsns.2012.03.021
16 https://doi.org/10.1016/j.cnsns.2012.03.022
17 https://doi.org/10.1016/j.ins.2017.08.071
18 https://doi.org/10.1016/j.isatra.2016.07.003
19 https://doi.org/10.1016/j.nahs.2015.02.004
20 https://doi.org/10.1016/j.neucom.2014.04.052
21 https://doi.org/10.1016/j.neucom.2015.05.020
22 https://doi.org/10.1016/j.neucom.2015.11.011
23 https://doi.org/10.1016/j.neucom.2015.12.071
24 https://doi.org/10.1016/j.neucom.2016.03.018
25 https://doi.org/10.1016/j.neucom.2016.03.049
26 https://doi.org/10.1016/j.neucom.2016.06.033
27 https://doi.org/10.1016/j.neucom.2016.08.065
28 https://doi.org/10.1016/j.neucom.2017.05.031
29 https://doi.org/10.1016/j.neucom.2017.05.039
30 https://doi.org/10.1016/j.neucom.2017.05.040
31 https://doi.org/10.1016/j.neunet.2015.07.003
32 https://doi.org/10.1016/j.neuron.2014.06.014
33 https://doi.org/10.1016/j.physa.2014.06.034
34 https://doi.org/10.1016/j.physleta.2010.04.023
35 https://doi.org/10.1016/j.physleta.2011.03.052
36 https://doi.org/10.1109/iscas.2010.5537708
37 https://doi.org/10.1109/tcyb.2018.2799969
38 https://doi.org/10.1109/tnnls.2016.2614709
39 https://doi.org/10.1137/1.9781611970777
40 https://doi.org/10.3182/20060628-3-fr-3903.00060
41 schema:datePublished 2019-12
42 schema:datePublishedReg 2019-12-01
43 schema:description In this study, we elucidated the exponential synchronization of a complex network system with time-varying delay. Then the exponential synchronization control of several types of complex network systems with time-varying delay under no requirements of delay derivable were explored. The dynamic behavior of a system node shows time-varying delays. Thus, to derive suitable conditions for the exponential synchronization of different complex network systems, we designed a linear feedback controller for linear coupling functions, using the Lyapunov stability theory, Razumikhin theorem, and Newton–Leibniz formula. The exponential damping rates for the exponential synchronization of different complex network systems were then estimated. Finally, we validated our conclusions through a numerical simulation.
44 schema:genre research_article
45 schema:inLanguage en
46 schema:isAccessibleForFree true
47 schema:isPartOf N437b1ef68a7442989face2989bd68dbd
48 N824d1b381bd6412e8c7c69572958ad7a
49 sg:journal.1052613
50 schema:name New results of exponential synchronization of complex network with time-varying delays
51 schema:pagination 10
52 schema:productId N6dd1ad21c6df4ff5b67c125058584a71
53 N74b32787f6994d0aa2ab64bddee66b74
54 N8730098baceb401b8ed28bcb6b7ddc20
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111407373
56 https://doi.org/10.1186/s13662-019-1947-1
57 schema:sdDatePublished 2019-04-11T08:40
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher N354beaa3c9414d0ea3ac7b50699190e5
60 schema:url https://link.springer.com/10.1186%2Fs13662-019-1947-1
61 sgo:license sg:explorer/license/
62 sgo:sdDataset articles
63 rdf:type schema:ScholarlyArticle
64 N100ba1c966c54f0197cd9b644dd7c91e schema:affiliation https://www.grid.ac/institutes/grid.459468.2
65 schema:familyName Ling
66 schema:givenName Zhaoming
67 rdf:type schema:Person
68 N354beaa3c9414d0ea3ac7b50699190e5 schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 N372aa3599a864431b4e196abff275ab0 rdf:first sg:person.012676060204.06
71 rdf:rest rdf:nil
72 N3bbe83de192b4b25957035f39df056ab rdf:first sg:person.016160672045.05
73 rdf:rest Nf2a6113074a143e1b8f6099053d55436
74 N437b1ef68a7442989face2989bd68dbd schema:issueNumber 1
75 rdf:type schema:PublicationIssue
76 N6dd1ad21c6df4ff5b67c125058584a71 schema:name dimensions_id
77 schema:value pub.1111407373
78 rdf:type schema:PropertyValue
79 N702d83b93f2a499ab1f1327463302127 rdf:first sg:person.010277120150.77
80 rdf:rest N372aa3599a864431b4e196abff275ab0
81 N74b32787f6994d0aa2ab64bddee66b74 schema:name readcube_id
82 schema:value 8bffa3ceb5d1df3b45e019cf6c1185e22ae374a54d1c8ce5388c10bb67e174b5
83 rdf:type schema:PropertyValue
84 N824d1b381bd6412e8c7c69572958ad7a schema:volumeNumber 2019
85 rdf:type schema:PublicationVolume
86 N8730098baceb401b8ed28bcb6b7ddc20 schema:name doi
87 schema:value 10.1186/s13662-019-1947-1
88 rdf:type schema:PropertyValue
89 Nf2a6113074a143e1b8f6099053d55436 rdf:first N100ba1c966c54f0197cd9b644dd7c91e
90 rdf:rest N702d83b93f2a499ab1f1327463302127
91 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
92 schema:name Information and Computing Sciences
93 rdf:type schema:DefinedTerm
94 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
95 schema:name Computation Theory and Mathematics
96 rdf:type schema:DefinedTerm
97 sg:journal.1052613 schema:issn 1687-1839
98 1687-1847
99 schema:name Advances in Difference Equations
100 rdf:type schema:Periodical
101 sg:person.010277120150.77 schema:affiliation https://www.grid.ac/institutes/grid.459468.2
102 schema:familyName Cheng
103 schema:givenName Zifeng
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010277120150.77
105 rdf:type schema:Person
106 sg:person.012676060204.06 schema:affiliation https://www.grid.ac/institutes/grid.459468.2
107 schema:familyName Zhou
108 schema:givenName Bifeng
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012676060204.06
110 rdf:type schema:Person
111 sg:person.016160672045.05 schema:affiliation https://www.grid.ac/institutes/grid.459468.2
112 schema:familyName Luo
113 schema:givenName Yiping
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016160672045.05
115 rdf:type schema:Person
116 sg:pub.10.1007/978-1-4612-4342-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050475850
117 https://doi.org/10.1007/978-1-4612-4342-7
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/s11571-017-9455-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1091890319
120 https://doi.org/10.1007/s11571-017-9455-z
121 rdf:type schema:CreativeWork
122 sg:pub.10.1038/337244a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035450685
123 https://doi.org/10.1038/337244a0
124 rdf:type schema:CreativeWork
125 sg:pub.10.1038/35004588 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043949443
126 https://doi.org/10.1038/35004588
127 rdf:type schema:CreativeWork
128 https://app.dimensions.ai/details/publication/pub.1050475850 schema:CreativeWork
129 https://doi.org/10.1016/j.amc.2017.07.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090738866
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.aml.2009.01.053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020462207
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.apm.2015.09.092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024324361
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.cam.2016.01.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007691496
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.chaos.2016.02.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003921541
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.chaos.2017.08.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091224229
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.cnsns.2012.03.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040789021
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.cnsns.2012.03.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035629096
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.ins.2017.08.071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091284815
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.isatra.2016.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021572949
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.nahs.2015.02.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039478635
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.neucom.2014.04.052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033504430
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.neucom.2015.05.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017052588
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.neucom.2015.11.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012633184
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.neucom.2015.12.071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020027839
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.neucom.2016.03.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045959418
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.neucom.2016.03.049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051196212
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.neucom.2016.06.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009547239
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.neucom.2016.08.065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042073221
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.neucom.2017.05.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085431014
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.neucom.2017.05.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085611889
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.neucom.2017.05.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085569919
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.neunet.2015.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009531423
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.neuron.2014.06.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039943174
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.physa.2014.06.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033782716
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.physleta.2010.04.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014035429
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.physleta.2011.03.052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002382406
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1109/iscas.2010.5537708 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094827776
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1109/tcyb.2018.2799969 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101004934
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1109/tnnls.2016.2614709 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061719295
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1137/1.9781611970777 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098556247
190 rdf:type schema:CreativeWork
191 https://doi.org/10.3182/20060628-3-fr-3903.00060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008072728
192 rdf:type schema:CreativeWork
193 https://www.grid.ac/institutes/grid.459468.2 schema:alternateName Hunan Institute of Engineering
194 schema:name Hunan Institute of Engineering, Xiangtan, China
195 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...