Ulam stability results to a class of nonlinear implicit boundary value problems of impulsive fractional differential equations View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-01-08

AUTHORS

A. Ali, K. Shah, D. Baleanu

ABSTRACT

In this paper, we derive some sufficient conditions which ensure the existence and uniqueness of a solution for a class of nonlinear three point boundary value problems of fractional order implicit differential equations (FOIDEs) with some boundary and impulsive conditions. Also we investigate various types of Hyers–Ulam stability (HUS) for our concerned problem. Using classical fixed point theory and nonlinear functional analysis, we obtain the required conditions. In the last section we give an example to show the applicability of our obtained results. More... »

PAGES

5

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13662-018-1940-0

DOI

http://dx.doi.org/10.1186/s13662-018-1940-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111263503


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, University of Malakand, Dir(L), Khyber Pakhtunkhwa, Pakistan", 
          "id": "http://www.grid.ac/institutes/grid.440567.4", 
          "name": [
            "Department of Mathematics, University of Malakand, Dir(L), Khyber Pakhtunkhwa, Pakistan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ali", 
        "givenName": "A.", 
        "id": "sg:person.012721760120.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012721760120.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, University of Malakand, Dir(L), Khyber Pakhtunkhwa, Pakistan", 
          "id": "http://www.grid.ac/institutes/grid.440567.4", 
          "name": [
            "Department of Mathematics, University of Malakand, Dir(L), Khyber Pakhtunkhwa, Pakistan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shah", 
        "givenName": "K.", 
        "id": "sg:person.013762156133.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013762156133.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Cankaya University, Ankara, Turkey", 
          "id": "http://www.grid.ac/institutes/grid.411919.5", 
          "name": [
            "Department of Mathematics, Cankaya University, Ankara, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Baleanu", 
        "givenName": "D.", 
        "id": "sg:person.01217763631.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217763631.11"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-1-4419-9637-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004265350", 
          "https://doi.org/10.1007/978-1-4419-9637-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-21593-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052899714", 
          "https://doi.org/10.1007/978-0-387-21593-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1515/fca-2016-0044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067531701", 
          "https://doi.org/10.1515/fca-2016-0044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1515/fca-2016-0017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048199241", 
          "https://doi.org/10.1515/fca-2016-0017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-015-8893-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031427283", 
          "https://doi.org/10.1007/978-94-015-8893-5"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-01-08", 
    "datePublishedReg": "2019-01-08", 
    "description": "In this paper, we derive some sufficient conditions which ensure the existence and uniqueness of a solution for a class of nonlinear three point boundary value problems of fractional order implicit differential equations (FOIDEs) with some boundary and impulsive conditions. Also we investigate various types of Hyers\u2013Ulam stability (HUS) for our concerned problem. Using classical fixed point theory and nonlinear functional analysis, we obtain the required conditions. In the last section we give an example to show the applicability of our obtained results.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s13662-018-1940-0", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1052613", 
        "issn": [
          "1687-1839", 
          "2731-4235"
        ], 
        "name": "Advances in Continuous and Discrete Models", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2019"
      }
    ], 
    "keywords": [
      "boundary value problem", 
      "Hyers\u2013Ulam stability", 
      "differential equations", 
      "value problem", 
      "impulsive fractional differential equations", 
      "implicit differential equations", 
      "fractional differential equations", 
      "nonlinear functional analysis", 
      "point boundary value problem", 
      "impulsive conditions", 
      "Ulam stability", 
      "point theory", 
      "sufficient conditions", 
      "concerned problem", 
      "equations", 
      "last section", 
      "problem", 
      "class", 
      "uniqueness", 
      "theory", 
      "existence", 
      "solution", 
      "stability", 
      "applicability", 
      "conditions", 
      "results", 
      "analysis", 
      "functional analysis", 
      "sections", 
      "types", 
      "example", 
      "paper"
    ], 
    "name": "Ulam stability results to a class of nonlinear implicit boundary value problems of impulsive fractional differential equations", 
    "pagination": "5", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111263503"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13662-018-1940-0"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13662-018-1940-0", 
      "https://app.dimensions.ai/details/publication/pub.1111263503"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T21:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_815.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s13662-018-1940-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13662-018-1940-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13662-018-1940-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13662-018-1940-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13662-018-1940-0'


 

This table displays all metadata directly associated to this object as RDF triples.

126 TRIPLES      21 PREDICATES      61 URIs      48 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13662-018-1940-0 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N7d064f0ea26f48c49ca2492ba22b9c4e
4 schema:citation sg:pub.10.1007/978-0-387-21593-8
5 sg:pub.10.1007/978-1-4419-9637-4
6 sg:pub.10.1007/978-94-015-8893-5
7 sg:pub.10.1515/fca-2016-0017
8 sg:pub.10.1515/fca-2016-0044
9 schema:datePublished 2019-01-08
10 schema:datePublishedReg 2019-01-08
11 schema:description In this paper, we derive some sufficient conditions which ensure the existence and uniqueness of a solution for a class of nonlinear three point boundary value problems of fractional order implicit differential equations (FOIDEs) with some boundary and impulsive conditions. Also we investigate various types of Hyers–Ulam stability (HUS) for our concerned problem. Using classical fixed point theory and nonlinear functional analysis, we obtain the required conditions. In the last section we give an example to show the applicability of our obtained results.
12 schema:genre article
13 schema:isAccessibleForFree true
14 schema:isPartOf N0e7fdd96f07a4316ad7824d525898cf7
15 Nd837f87bc2bc4d9294db19a2402c62b4
16 sg:journal.1052613
17 schema:keywords Hyers–Ulam stability
18 Ulam stability
19 analysis
20 applicability
21 boundary value problem
22 class
23 concerned problem
24 conditions
25 differential equations
26 equations
27 example
28 existence
29 fractional differential equations
30 functional analysis
31 implicit differential equations
32 impulsive conditions
33 impulsive fractional differential equations
34 last section
35 nonlinear functional analysis
36 paper
37 point boundary value problem
38 point theory
39 problem
40 results
41 sections
42 solution
43 stability
44 sufficient conditions
45 theory
46 types
47 uniqueness
48 value problem
49 schema:name Ulam stability results to a class of nonlinear implicit boundary value problems of impulsive fractional differential equations
50 schema:pagination 5
51 schema:productId N291ab26d1dd646368f4f2af1c9fdd442
52 Nd26bbdaa6ce24c17965fda79a5df8eda
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111263503
54 https://doi.org/10.1186/s13662-018-1940-0
55 schema:sdDatePublished 2022-11-24T21:05
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher N93459d79c537406785e598ef61f0bea3
58 schema:url https://doi.org/10.1186/s13662-018-1940-0
59 sgo:license sg:explorer/license/
60 sgo:sdDataset articles
61 rdf:type schema:ScholarlyArticle
62 N0e7fdd96f07a4316ad7824d525898cf7 schema:volumeNumber 2019
63 rdf:type schema:PublicationVolume
64 N291ab26d1dd646368f4f2af1c9fdd442 schema:name dimensions_id
65 schema:value pub.1111263503
66 rdf:type schema:PropertyValue
67 N5ee80ab2feb3433f8547c1e25057552e rdf:first sg:person.01217763631.11
68 rdf:rest rdf:nil
69 N7d064f0ea26f48c49ca2492ba22b9c4e rdf:first sg:person.012721760120.23
70 rdf:rest N9a5eb40c6e5940d7913432cd33bb16e2
71 N93459d79c537406785e598ef61f0bea3 schema:name Springer Nature - SN SciGraph project
72 rdf:type schema:Organization
73 N9a5eb40c6e5940d7913432cd33bb16e2 rdf:first sg:person.013762156133.22
74 rdf:rest N5ee80ab2feb3433f8547c1e25057552e
75 Nd26bbdaa6ce24c17965fda79a5df8eda schema:name doi
76 schema:value 10.1186/s13662-018-1940-0
77 rdf:type schema:PropertyValue
78 Nd837f87bc2bc4d9294db19a2402c62b4 schema:issueNumber 1
79 rdf:type schema:PublicationIssue
80 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
81 schema:name Mathematical Sciences
82 rdf:type schema:DefinedTerm
83 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
84 schema:name Pure Mathematics
85 rdf:type schema:DefinedTerm
86 sg:journal.1052613 schema:issn 1687-1839
87 2731-4235
88 schema:name Advances in Continuous and Discrete Models
89 schema:publisher Springer Nature
90 rdf:type schema:Periodical
91 sg:person.01217763631.11 schema:affiliation grid-institutes:grid.411919.5
92 schema:familyName Baleanu
93 schema:givenName D.
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217763631.11
95 rdf:type schema:Person
96 sg:person.012721760120.23 schema:affiliation grid-institutes:grid.440567.4
97 schema:familyName Ali
98 schema:givenName A.
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012721760120.23
100 rdf:type schema:Person
101 sg:person.013762156133.22 schema:affiliation grid-institutes:grid.440567.4
102 schema:familyName Shah
103 schema:givenName K.
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013762156133.22
105 rdf:type schema:Person
106 sg:pub.10.1007/978-0-387-21593-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052899714
107 https://doi.org/10.1007/978-0-387-21593-8
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/978-1-4419-9637-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004265350
110 https://doi.org/10.1007/978-1-4419-9637-4
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/978-94-015-8893-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031427283
113 https://doi.org/10.1007/978-94-015-8893-5
114 rdf:type schema:CreativeWork
115 sg:pub.10.1515/fca-2016-0017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048199241
116 https://doi.org/10.1515/fca-2016-0017
117 rdf:type schema:CreativeWork
118 sg:pub.10.1515/fca-2016-0044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067531701
119 https://doi.org/10.1515/fca-2016-0044
120 rdf:type schema:CreativeWork
121 grid-institutes:grid.411919.5 schema:alternateName Department of Mathematics, Cankaya University, Ankara, Turkey
122 schema:name Department of Mathematics, Cankaya University, Ankara, Turkey
123 rdf:type schema:Organization
124 grid-institutes:grid.440567.4 schema:alternateName Department of Mathematics, University of Malakand, Dir(L), Khyber Pakhtunkhwa, Pakistan
125 schema:name Department of Mathematics, University of Malakand, Dir(L), Khyber Pakhtunkhwa, Pakistan
126 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...