Fault detection filter design for continuous-time nonlinear Markovian jump systems with mode-dependent delay and time-varying transition probabilities View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

B Wang, FC Zou, J Cheng, SM Zhong

ABSTRACT

This paper focuses on fault detection filter (FDF) design for continuous-time nonlinear Markovian jump systems (NMJSs) with mode-dependent delay and time-varying transition probabilities (TPs). By using a novel Lyapunov-Krasovskii function and based on convex polyhedron technique, a new FDF, as the residual generator, is constructed to guarantee the mean-square exponential stability and a prescribed level of disturbance attenuation for admissible perturbations of NMJSs. Finally, the numerical simulation is carried out to demonstrate the effectiveness of our method. More... »

PAGES

262

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13662-017-1313-0

DOI

http://dx.doi.org/10.1186/s13662-017-1313-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091404941


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Electronic Science and Technology of China", 
          "id": "https://www.grid.ac/institutes/grid.54549.39", 
          "name": [
            "School of Electrical Engineering and Electronic Information, Xihua University, 610039, Chengdu, China", 
            "School of Applied Mathematics, University Electronic Science and Technology of China, 610054, Chengdu, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "B", 
        "id": "sg:person.012666321467.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012666321467.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Xihua University", 
          "id": "https://www.grid.ac/institutes/grid.412983.5", 
          "name": [
            "School of Electrical Engineering and Electronic Information, Xihua University, 610039, Chengdu, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zou", 
        "givenName": "FC", 
        "id": "sg:person.014126634641.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014126634641.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hubei University for Nationalities", 
          "id": "https://www.grid.ac/institutes/grid.440771.1", 
          "name": [
            "School of Science, Hubei University for Nationalities, 445000, Enshi, Hubei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cheng", 
        "givenName": "J", 
        "id": "sg:person.01354123373.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354123373.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Electronic Science and Technology of China", 
          "id": "https://www.grid.ac/institutes/grid.54549.39", 
          "name": [
            "School of Applied Mathematics, University Electronic Science and Technology of China, 610054, Chengdu, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhong", 
        "givenName": "SM", 
        "id": "sg:person.0713340124.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713340124.50"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.automatica.2008.08.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003369046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00207179.2010.481023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006683486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.automatica.2012.05.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010583945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jfranklin.2009.05.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012517460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nahs.2009.09.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018974546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fss.2011.05.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019005529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jfranklin.2013.01.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019412893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/rnc.3532", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026259913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.automatica.2014.10.084", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027606393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00207720802556237", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030031736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fss.2016.06.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030549366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.automatica.2010.10.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032303085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jfranklin.2010.03.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033919008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/rnc.3369", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042640523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nonrwa.2012.10.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043533564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/rnc.1486", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047687026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/rnc.1486", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047687026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.isatra.2016.10.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048769663"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-cta.2016.0148", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056824533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/5326.971661", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061186786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tac.2002.803529", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061475100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tac.2010.2042007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061477503"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tac.2010.2046114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061477591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcsi.2011.2157734", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061567126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tie.2010.2103537", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061624840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsp.2011.2141666", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061802689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2017.03.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084083149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-cta.2016.1462", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085313188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sigpro.2017.05.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085424992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nahs.2017.05.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090602965"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amc.2017.06.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090833565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/acc.2006.1657631", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093463996"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cdc.2000.914233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094583338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9781611970777", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098556247"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12", 
    "datePublishedReg": "2017-12-01", 
    "description": "This paper focuses on fault detection filter (FDF) design for continuous-time nonlinear Markovian jump systems (NMJSs) with mode-dependent delay and time-varying transition probabilities (TPs). By using a novel Lyapunov-Krasovskii function and based on convex polyhedron technique, a new FDF, as the residual generator, is constructed to guarantee the mean-square exponential stability and a prescribed level of disturbance attenuation for admissible perturbations of NMJSs. Finally, the numerical simulation is carried out to demonstrate the effectiveness of our method.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s13662-017-1313-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1052613", 
        "issn": [
          "1687-1839", 
          "1687-1847"
        ], 
        "name": "Advances in Difference Equations", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2017"
      }
    ], 
    "name": "Fault detection filter design for continuous-time nonlinear Markovian jump systems with mode-dependent delay and time-varying transition probabilities", 
    "pagination": "262", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9456e16eeba4ce83d3415ce0f1af9ca32aafe9ba7ba684ba53448e80f4af58b1"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13662-017-1313-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091404941"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13662-017-1313-0", 
      "https://app.dimensions.ai/details/publication/pub.1091404941"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000601.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186/s13662-017-1313-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13662-017-1313-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13662-017-1313-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13662-017-1313-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13662-017-1313-0'


 

This table displays all metadata directly associated to this object as RDF triples.

188 TRIPLES      21 PREDICATES      60 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13662-017-1313-0 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nd090a2b0b7f2456787479f24d29e3267
4 schema:citation https://doi.org/10.1002/rnc.1486
5 https://doi.org/10.1002/rnc.3369
6 https://doi.org/10.1002/rnc.3532
7 https://doi.org/10.1016/j.amc.2017.06.031
8 https://doi.org/10.1016/j.automatica.2008.08.010
9 https://doi.org/10.1016/j.automatica.2010.10.014
10 https://doi.org/10.1016/j.automatica.2012.05.024
11 https://doi.org/10.1016/j.automatica.2014.10.084
12 https://doi.org/10.1016/j.fss.2011.05.002
13 https://doi.org/10.1016/j.fss.2016.06.007
14 https://doi.org/10.1016/j.ins.2017.03.009
15 https://doi.org/10.1016/j.isatra.2016.10.016
16 https://doi.org/10.1016/j.jfranklin.2009.05.007
17 https://doi.org/10.1016/j.jfranklin.2010.03.004
18 https://doi.org/10.1016/j.jfranklin.2013.01.023
19 https://doi.org/10.1016/j.nahs.2009.09.001
20 https://doi.org/10.1016/j.nahs.2017.05.006
21 https://doi.org/10.1016/j.nonrwa.2012.10.011
22 https://doi.org/10.1016/j.sigpro.2017.05.018
23 https://doi.org/10.1049/iet-cta.2016.0148
24 https://doi.org/10.1049/iet-cta.2016.1462
25 https://doi.org/10.1080/00207179.2010.481023
26 https://doi.org/10.1080/00207720802556237
27 https://doi.org/10.1109/5326.971661
28 https://doi.org/10.1109/acc.2006.1657631
29 https://doi.org/10.1109/cdc.2000.914233
30 https://doi.org/10.1109/tac.2002.803529
31 https://doi.org/10.1109/tac.2010.2042007
32 https://doi.org/10.1109/tac.2010.2046114
33 https://doi.org/10.1109/tcsi.2011.2157734
34 https://doi.org/10.1109/tie.2010.2103537
35 https://doi.org/10.1109/tsp.2011.2141666
36 https://doi.org/10.1137/1.9781611970777
37 schema:datePublished 2017-12
38 schema:datePublishedReg 2017-12-01
39 schema:description This paper focuses on fault detection filter (FDF) design for continuous-time nonlinear Markovian jump systems (NMJSs) with mode-dependent delay and time-varying transition probabilities (TPs). By using a novel Lyapunov-Krasovskii function and based on convex polyhedron technique, a new FDF, as the residual generator, is constructed to guarantee the mean-square exponential stability and a prescribed level of disturbance attenuation for admissible perturbations of NMJSs. Finally, the numerical simulation is carried out to demonstrate the effectiveness of our method.
40 schema:genre research_article
41 schema:inLanguage en
42 schema:isAccessibleForFree true
43 schema:isPartOf N9b04e5c696d241df8e9948771e8051fa
44 Nf45b55cb1b9c4641b4ad78603c9f6336
45 sg:journal.1052613
46 schema:name Fault detection filter design for continuous-time nonlinear Markovian jump systems with mode-dependent delay and time-varying transition probabilities
47 schema:pagination 262
48 schema:productId N85f83fd838df4234ac693f6588742d1c
49 Na3d98755f14e4b22900b2b8c17ada1db
50 Nbb219ccbca8b4d978e50c9e8c4813e36
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091404941
52 https://doi.org/10.1186/s13662-017-1313-0
53 schema:sdDatePublished 2019-04-11T01:21
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher N535183f5c8a149f596e6a1f7b00ee24e
56 schema:url http://link.springer.com/10.1186/s13662-017-1313-0
57 sgo:license sg:explorer/license/
58 sgo:sdDataset articles
59 rdf:type schema:ScholarlyArticle
60 N516d955bd3be47709c0237007f0600e4 rdf:first sg:person.014126634641.70
61 rdf:rest Nf5664390614a4fe9a2a141298df07c4d
62 N535183f5c8a149f596e6a1f7b00ee24e schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 N85f83fd838df4234ac693f6588742d1c schema:name readcube_id
65 schema:value 9456e16eeba4ce83d3415ce0f1af9ca32aafe9ba7ba684ba53448e80f4af58b1
66 rdf:type schema:PropertyValue
67 N865f6441d0d74620b4bc15d9ec5b2b6d rdf:first sg:person.0713340124.50
68 rdf:rest rdf:nil
69 N9b04e5c696d241df8e9948771e8051fa schema:issueNumber 1
70 rdf:type schema:PublicationIssue
71 Na3d98755f14e4b22900b2b8c17ada1db schema:name doi
72 schema:value 10.1186/s13662-017-1313-0
73 rdf:type schema:PropertyValue
74 Nbb219ccbca8b4d978e50c9e8c4813e36 schema:name dimensions_id
75 schema:value pub.1091404941
76 rdf:type schema:PropertyValue
77 Nd090a2b0b7f2456787479f24d29e3267 rdf:first sg:person.012666321467.45
78 rdf:rest N516d955bd3be47709c0237007f0600e4
79 Nf45b55cb1b9c4641b4ad78603c9f6336 schema:volumeNumber 2017
80 rdf:type schema:PublicationVolume
81 Nf5664390614a4fe9a2a141298df07c4d rdf:first sg:person.01354123373.74
82 rdf:rest N865f6441d0d74620b4bc15d9ec5b2b6d
83 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
84 schema:name Information and Computing Sciences
85 rdf:type schema:DefinedTerm
86 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
87 schema:name Artificial Intelligence and Image Processing
88 rdf:type schema:DefinedTerm
89 sg:journal.1052613 schema:issn 1687-1839
90 1687-1847
91 schema:name Advances in Difference Equations
92 rdf:type schema:Periodical
93 sg:person.012666321467.45 schema:affiliation https://www.grid.ac/institutes/grid.54549.39
94 schema:familyName Wang
95 schema:givenName B
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012666321467.45
97 rdf:type schema:Person
98 sg:person.01354123373.74 schema:affiliation https://www.grid.ac/institutes/grid.440771.1
99 schema:familyName Cheng
100 schema:givenName J
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354123373.74
102 rdf:type schema:Person
103 sg:person.014126634641.70 schema:affiliation https://www.grid.ac/institutes/grid.412983.5
104 schema:familyName Zou
105 schema:givenName FC
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014126634641.70
107 rdf:type schema:Person
108 sg:person.0713340124.50 schema:affiliation https://www.grid.ac/institutes/grid.54549.39
109 schema:familyName Zhong
110 schema:givenName SM
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713340124.50
112 rdf:type schema:Person
113 https://doi.org/10.1002/rnc.1486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047687026
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1002/rnc.3369 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042640523
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1002/rnc.3532 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026259913
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.amc.2017.06.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090833565
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.automatica.2008.08.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003369046
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.automatica.2010.10.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032303085
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.automatica.2012.05.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010583945
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.automatica.2014.10.084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027606393
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.fss.2011.05.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019005529
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.fss.2016.06.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030549366
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.ins.2017.03.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084083149
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.isatra.2016.10.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048769663
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.jfranklin.2009.05.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012517460
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.jfranklin.2010.03.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033919008
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.jfranklin.2013.01.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019412893
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.nahs.2009.09.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018974546
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.nahs.2017.05.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090602965
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.nonrwa.2012.10.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043533564
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.sigpro.2017.05.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085424992
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1049/iet-cta.2016.0148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056824533
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1049/iet-cta.2016.1462 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085313188
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1080/00207179.2010.481023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006683486
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1080/00207720802556237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030031736
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1109/5326.971661 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061186786
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1109/acc.2006.1657631 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093463996
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1109/cdc.2000.914233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094583338
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1109/tac.2002.803529 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061475100
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1109/tac.2010.2042007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061477503
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1109/tac.2010.2046114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061477591
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1109/tcsi.2011.2157734 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061567126
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1109/tie.2010.2103537 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061624840
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1109/tsp.2011.2141666 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061802689
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1137/1.9781611970777 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098556247
178 rdf:type schema:CreativeWork
179 https://www.grid.ac/institutes/grid.412983.5 schema:alternateName Xihua University
180 schema:name School of Electrical Engineering and Electronic Information, Xihua University, 610039, Chengdu, China
181 rdf:type schema:Organization
182 https://www.grid.ac/institutes/grid.440771.1 schema:alternateName Hubei University for Nationalities
183 schema:name School of Science, Hubei University for Nationalities, 445000, Enshi, Hubei, China
184 rdf:type schema:Organization
185 https://www.grid.ac/institutes/grid.54549.39 schema:alternateName University of Electronic Science and Technology of China
186 schema:name School of Applied Mathematics, University Electronic Science and Technology of China, 610054, Chengdu, China
187 School of Electrical Engineering and Electronic Information, Xihua University, 610039, Chengdu, China
188 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...