Exponential stability of impulsive stochastic genetic regulatory networks with time-varying delays and reaction-diffusion View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-11-29

AUTHORS

Boqiang Cao, Qimin Zhang, Ming Ye

ABSTRACT

We present a mean-square exponential stability analysis for impulsive stochastic genetic regulatory networks (GRNs) with time-varying delays and reaction-diffusion driven by fractional Brownian motion (fBm). By constructing a Lyapunov functional and using linear matrix inequality for stochastic analysis we derive sufficient conditions to guarantee the exponential stability of the stochastic model of impulsive GRNs in the mean-square sense. Meanwhile, the corresponding results are obtained for the GRNs with constant time delays and standard Brownian motion. An example is presented to illustrate our results of the mean-square exponential stability analysis. More... »

PAGES

307

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13662-016-1033-x

DOI

http://dx.doi.org/10.1186/s13662-016-1033-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1003857773


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Mathematics and Statistics, Ningxia University, 750021, Yinchuan, P.R. China", 
          "id": "http://www.grid.ac/institutes/grid.260987.2", 
          "name": [
            "School of Mathematics and Statistics, Ningxia University, 750021, Yinchuan, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cao", 
        "givenName": "Boqiang", 
        "id": "sg:person.07560767223.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07560767223.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Mathematics and Statistics, Ningxia University, 750021, Yinchuan, P.R. China", 
          "id": "http://www.grid.ac/institutes/grid.260987.2", 
          "name": [
            "School of Mathematics and Statistics, Ningxia University, 750021, Yinchuan, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Qimin", 
        "id": "sg:person.07662762662.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07662762662.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Scientific Computing, Florida State University, 32306-4120, Tallahassee, FL, USA", 
          "id": "http://www.grid.ac/institutes/grid.255986.5", 
          "name": [
            "Department of Scientific Computing, Florida State University, 32306-4120, Tallahassee, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ye", 
        "givenName": "Ming", 
        "id": "sg:person.016425122141.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016425122141.09"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/s13662-016-0788-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028797818", 
          "https://doi.org/10.1186/s13662-016-0788-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-011-0575-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012674797", 
          "https://doi.org/10.1007/s00521-011-0575-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00034-015-0006-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020497900", 
          "https://doi.org/10.1007/s00034-015-0006-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-84628-797-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012085691", 
          "https://doi.org/10.1007/978-1-84628-797-8"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-11-29", 
    "datePublishedReg": "2016-11-29", 
    "description": "We present a mean-square exponential stability analysis for impulsive stochastic genetic regulatory networks (GRNs) with time-varying delays and reaction-diffusion driven by fractional Brownian motion (fBm). By constructing a Lyapunov functional and using linear matrix inequality for stochastic analysis we derive sufficient conditions to guarantee the exponential stability of the stochastic model of impulsive GRNs in the mean-square sense. Meanwhile, the corresponding results are obtained for the GRNs with constant time delays and standard Brownian motion. An example is presented to illustrate our results of the mean-square exponential stability analysis.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s13662-016-1033-x", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4321653", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8119858", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5018921", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1421475", 
        "issn": [
          "2731-4235"
        ], 
        "name": "Advances in Continuous and Discrete Models", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2016"
      }
    ], 
    "keywords": [
      "mean-square exponential stability analysis", 
      "stochastic genetic regulatory networks", 
      "genetic regulatory networks", 
      "time-varying delays", 
      "exponential stability analysis", 
      "exponential stability", 
      "Brownian motion", 
      "stability analysis", 
      "linear matrix inequalities", 
      "mean square sense", 
      "fractional Brownian motion", 
      "standard Brownian motion", 
      "matrix inequalities", 
      "constant time delay", 
      "stochastic analysis", 
      "stochastic model", 
      "sufficient conditions", 
      "time delay", 
      "corresponding results", 
      "regulatory networks", 
      "motion", 
      "Lyapunov", 
      "delay", 
      "inequality", 
      "network", 
      "stability", 
      "model", 
      "sense", 
      "results", 
      "analysis", 
      "conditions", 
      "example"
    ], 
    "name": "Exponential stability of impulsive stochastic genetic regulatory networks with time-varying delays and reaction-diffusion", 
    "pagination": "307", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1003857773"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13662-016-1033-x"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13662-016-1033-x", 
      "https://app.dimensions.ai/details/publication/pub.1003857773"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-10T10:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_690.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s13662-016-1033-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13662-016-1033-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13662-016-1033-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13662-016-1033-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13662-016-1033-x'


 

This table displays all metadata directly associated to this object as RDF triples.

128 TRIPLES      22 PREDICATES      61 URIs      49 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13662-016-1033-x schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Nb1acf7e551b04ad1bdb556d9e9331a89
4 schema:citation sg:pub.10.1007/978-1-84628-797-8
5 sg:pub.10.1007/s00034-015-0006-8
6 sg:pub.10.1007/s00521-011-0575-9
7 sg:pub.10.1186/s13662-016-0788-4
8 schema:datePublished 2016-11-29
9 schema:datePublishedReg 2016-11-29
10 schema:description We present a mean-square exponential stability analysis for impulsive stochastic genetic regulatory networks (GRNs) with time-varying delays and reaction-diffusion driven by fractional Brownian motion (fBm). By constructing a Lyapunov functional and using linear matrix inequality for stochastic analysis we derive sufficient conditions to guarantee the exponential stability of the stochastic model of impulsive GRNs in the mean-square sense. Meanwhile, the corresponding results are obtained for the GRNs with constant time delays and standard Brownian motion. An example is presented to illustrate our results of the mean-square exponential stability analysis.
11 schema:genre article
12 schema:inLanguage en
13 schema:isAccessibleForFree true
14 schema:isPartOf N1c6f4575525944e7bbb7e0fd41d9d58e
15 Nf2ed24d8ae234a879e08492aa9e84db6
16 sg:journal.1421475
17 schema:keywords Brownian motion
18 Lyapunov
19 analysis
20 conditions
21 constant time delay
22 corresponding results
23 delay
24 example
25 exponential stability
26 exponential stability analysis
27 fractional Brownian motion
28 genetic regulatory networks
29 inequality
30 linear matrix inequalities
31 matrix inequalities
32 mean square sense
33 mean-square exponential stability analysis
34 model
35 motion
36 network
37 regulatory networks
38 results
39 sense
40 stability
41 stability analysis
42 standard Brownian motion
43 stochastic analysis
44 stochastic genetic regulatory networks
45 stochastic model
46 sufficient conditions
47 time delay
48 time-varying delays
49 schema:name Exponential stability of impulsive stochastic genetic regulatory networks with time-varying delays and reaction-diffusion
50 schema:pagination 307
51 schema:productId Nbe9269de4911441ea8a7dac0a9bfd22c
52 Ne341a111e15c439e953c24a95d74a001
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003857773
54 https://doi.org/10.1186/s13662-016-1033-x
55 schema:sdDatePublished 2022-05-10T10:12
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher N6f795f924be6411ba3396f5c41e8eead
58 schema:url https://doi.org/10.1186/s13662-016-1033-x
59 sgo:license sg:explorer/license/
60 sgo:sdDataset articles
61 rdf:type schema:ScholarlyArticle
62 N1c6f4575525944e7bbb7e0fd41d9d58e schema:volumeNumber 2016
63 rdf:type schema:PublicationVolume
64 N6f795f924be6411ba3396f5c41e8eead schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 N8b04c0a6eda04783851fd745393c4b31 rdf:first sg:person.07662762662.97
67 rdf:rest Nc3ea7b3823914a6bbd835e2a3b6f546e
68 Nb1acf7e551b04ad1bdb556d9e9331a89 rdf:first sg:person.07560767223.44
69 rdf:rest N8b04c0a6eda04783851fd745393c4b31
70 Nbe9269de4911441ea8a7dac0a9bfd22c schema:name dimensions_id
71 schema:value pub.1003857773
72 rdf:type schema:PropertyValue
73 Nc3ea7b3823914a6bbd835e2a3b6f546e rdf:first sg:person.016425122141.09
74 rdf:rest rdf:nil
75 Ne341a111e15c439e953c24a95d74a001 schema:name doi
76 schema:value 10.1186/s13662-016-1033-x
77 rdf:type schema:PropertyValue
78 Nf2ed24d8ae234a879e08492aa9e84db6 schema:issueNumber 1
79 rdf:type schema:PublicationIssue
80 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
81 schema:name Mathematical Sciences
82 rdf:type schema:DefinedTerm
83 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
84 schema:name Statistics
85 rdf:type schema:DefinedTerm
86 sg:grant.4321653 http://pending.schema.org/fundedItem sg:pub.10.1186/s13662-016-1033-x
87 rdf:type schema:MonetaryGrant
88 sg:grant.5018921 http://pending.schema.org/fundedItem sg:pub.10.1186/s13662-016-1033-x
89 rdf:type schema:MonetaryGrant
90 sg:grant.8119858 http://pending.schema.org/fundedItem sg:pub.10.1186/s13662-016-1033-x
91 rdf:type schema:MonetaryGrant
92 sg:journal.1421475 schema:issn 2731-4235
93 schema:name Advances in Continuous and Discrete Models
94 schema:publisher Springer Nature
95 rdf:type schema:Periodical
96 sg:person.016425122141.09 schema:affiliation grid-institutes:grid.255986.5
97 schema:familyName Ye
98 schema:givenName Ming
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016425122141.09
100 rdf:type schema:Person
101 sg:person.07560767223.44 schema:affiliation grid-institutes:grid.260987.2
102 schema:familyName Cao
103 schema:givenName Boqiang
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07560767223.44
105 rdf:type schema:Person
106 sg:person.07662762662.97 schema:affiliation grid-institutes:grid.260987.2
107 schema:familyName Zhang
108 schema:givenName Qimin
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07662762662.97
110 rdf:type schema:Person
111 sg:pub.10.1007/978-1-84628-797-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012085691
112 https://doi.org/10.1007/978-1-84628-797-8
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/s00034-015-0006-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020497900
115 https://doi.org/10.1007/s00034-015-0006-8
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/s00521-011-0575-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012674797
118 https://doi.org/10.1007/s00521-011-0575-9
119 rdf:type schema:CreativeWork
120 sg:pub.10.1186/s13662-016-0788-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028797818
121 https://doi.org/10.1186/s13662-016-0788-4
122 rdf:type schema:CreativeWork
123 grid-institutes:grid.255986.5 schema:alternateName Department of Scientific Computing, Florida State University, 32306-4120, Tallahassee, FL, USA
124 schema:name Department of Scientific Computing, Florida State University, 32306-4120, Tallahassee, FL, USA
125 rdf:type schema:Organization
126 grid-institutes:grid.260987.2 schema:alternateName School of Mathematics and Statistics, Ningxia University, 750021, Yinchuan, P.R. China
127 schema:name School of Mathematics and Statistics, Ningxia University, 750021, Yinchuan, P.R. China
128 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...