The existence and Hyers–Ulam stability of solution for an impulsive Riemann–Liouville fractional neutral functional stochastic differential equation with infinite delay ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Yuchen Guo, Xiao-Bao Shu, Yongjin Li, Fei Xu

ABSTRACT

This paper deals with the existence of solution for an impulsive Riemann–Liouville fractional neutral functional stochastic differential equation with infinite delay of order 1<β<2 and its Hyers–Ulam stability. We prove the mild solutions for the equation using basic theorems of fractional differential equation. The existence result of the equation is obtained by Mönch’s fixed point theorem. Finally, we prove the Hyers–Ulam stability of the solution. More... »

PAGES

59

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13661-019-1172-6

DOI

http://dx.doi.org/10.1186/s13661-019-1172-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112902279


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Hunan University", 
          "id": "https://www.grid.ac/institutes/grid.67293.39", 
          "name": [
            "Department of Mathematics and Econometrics, Hunan University, Changsha, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guo", 
        "givenName": "Yuchen", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hunan University", 
          "id": "https://www.grid.ac/institutes/grid.67293.39", 
          "name": [
            "Department of Mathematics and Econometrics, Hunan University, Changsha, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shu", 
        "givenName": "Xiao-Bao", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sun Yat-sen University", 
          "id": "https://www.grid.ac/institutes/grid.12981.33", 
          "name": [
            "Department of Mathematics, Sun Yat-sen University, GuangZhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Yongjin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wilfrid Laurier University", 
          "id": "https://www.grid.ac/institutes/grid.268252.9", 
          "name": [
            "Department of Mathematics, Wilfrid Laurier University, Waterloo, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Fei", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1088/1751-8113/44/33/335201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005626745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.na.2012.10.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016759014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0362-546x(83)90006-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027429338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00397-005-0043-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030105400", 
          "https://doi.org/10.1007/s00397-005-0043-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00397-005-0043-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030105400", 
          "https://doi.org/10.1007/s00397-005-0043-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0362-546x(80)90010-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032055094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amc.2015.10.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037688925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmaa.2000.7392", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042889759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2015/603893", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051346797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1215/s0012-7094-43-01059-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064416320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4310/dpde.2011.v8.n4.a3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072459711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mma.4405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085034463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mma.4835", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101841486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmaa.2018.07.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105308496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/ijnsns-2018-0040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107884315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/ijnsns-2018-0040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107884315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/17442508.2018.1551400", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110229682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/17442508.2018.1551400", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110229682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mma.5419", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110368670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12346-019-00315-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111367060", 
          "https://doi.org/10.1007/s12346-019-00315-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amc.2019.01.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111432859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amc.2019.01.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111432859"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "This paper deals with the existence of solution for an impulsive Riemann\u2013Liouville fractional neutral functional stochastic differential equation with infinite delay of order 1<\u03b2<2 and its Hyers\u2013Ulam stability. We prove the mild solutions for the equation using basic theorems of fractional differential equation. The existence result of the equation is obtained by M\u00f6nch\u2019s fixed point theorem. Finally, we prove the Hyers\u2013Ulam stability of the solution.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s13661-019-1172-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136755", 
        "issn": [
          "1687-2762", 
          "1687-2770"
        ], 
        "name": "Boundary Value Problems", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2019"
      }
    ], 
    "name": "The existence and Hyers\u2013Ulam stability of solution for an impulsive Riemann\u2013Liouville fractional neutral functional stochastic differential equation with infinite delay of order 1<\u03b2<2", 
    "pagination": "59", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f1c4ac8bec04605c5d1a9ee4330dede14f0fcfe9890ff387094382f9d2216f91"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13661-019-1172-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112902279"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13661-019-1172-6", 
      "https://app.dimensions.ai/details/publication/pub.1112902279"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70037_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs13661-019-1172-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13661-019-1172-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13661-019-1172-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13661-019-1172-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13661-019-1172-6'


 

This table displays all metadata directly associated to this object as RDF triples.

140 TRIPLES      21 PREDICATES      45 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13661-019-1172-6 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N3d5c0891b46346928cd8bdc8c75ee710
4 schema:citation sg:pub.10.1007/s00397-005-0043-5
5 sg:pub.10.1007/s12346-019-00315-x
6 https://doi.org/10.1002/mma.4405
7 https://doi.org/10.1002/mma.4835
8 https://doi.org/10.1002/mma.5419
9 https://doi.org/10.1006/jmaa.2000.7392
10 https://doi.org/10.1016/0362-546x(80)90010-3
11 https://doi.org/10.1016/0362-546x(83)90006-8
12 https://doi.org/10.1016/j.amc.2015.10.020
13 https://doi.org/10.1016/j.amc.2019.01.014
14 https://doi.org/10.1016/j.jmaa.2018.07.002
15 https://doi.org/10.1016/j.na.2012.10.009
16 https://doi.org/10.1080/17442508.2018.1551400
17 https://doi.org/10.1088/1751-8113/44/33/335201
18 https://doi.org/10.1155/2015/603893
19 https://doi.org/10.1215/s0012-7094-43-01059-2
20 https://doi.org/10.1515/ijnsns-2018-0040
21 https://doi.org/10.4310/dpde.2011.v8.n4.a3
22 schema:datePublished 2019-12
23 schema:datePublishedReg 2019-12-01
24 schema:description This paper deals with the existence of solution for an impulsive Riemann–Liouville fractional neutral functional stochastic differential equation with infinite delay of order 1<β<2 and its Hyers–Ulam stability. We prove the mild solutions for the equation using basic theorems of fractional differential equation. The existence result of the equation is obtained by Mönch’s fixed point theorem. Finally, we prove the Hyers–Ulam stability of the solution.
25 schema:genre research_article
26 schema:inLanguage en
27 schema:isAccessibleForFree true
28 schema:isPartOf N52972a81104848659624144abded94da
29 N961a805d5de141df891c21ec951c3911
30 sg:journal.1136755
31 schema:name The existence and Hyers–Ulam stability of solution for an impulsive Riemann–Liouville fractional neutral functional stochastic differential equation with infinite delay of order 1<β<2
32 schema:pagination 59
33 schema:productId Nad12dca73d9d4e738d56ead0f7e798ec
34 Nbb102b0efb9b4111ba88d2b2ec10aa8c
35 Nd0b16cc62cd946c284d281a80a0c30ff
36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112902279
37 https://doi.org/10.1186/s13661-019-1172-6
38 schema:sdDatePublished 2019-04-11T12:38
39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
40 schema:sdPublisher N2d0e0f49a55841059187eab6e13072f1
41 schema:url https://link.springer.com/10.1186%2Fs13661-019-1172-6
42 sgo:license sg:explorer/license/
43 sgo:sdDataset articles
44 rdf:type schema:ScholarlyArticle
45 N0f41e3b0b88949fe97326f767861e863 rdf:first Nfbc500fa85fe4c6c8a5bea55a2f58e76
46 rdf:rest N871d23e9caaf4ff6b0d4888faad4c76f
47 N1794a2fddbb644bda34a6f2e07632f09 rdf:first N6ad343da31184208a5e78ced6f763541
48 rdf:rest N0f41e3b0b88949fe97326f767861e863
49 N2d0e0f49a55841059187eab6e13072f1 schema:name Springer Nature - SN SciGraph project
50 rdf:type schema:Organization
51 N3d5c0891b46346928cd8bdc8c75ee710 rdf:first Nd7679b3121fc4f6aa7f5582f5c058ca1
52 rdf:rest N1794a2fddbb644bda34a6f2e07632f09
53 N3ea1e7cd7f7b4295859c611e28645d24 schema:affiliation https://www.grid.ac/institutes/grid.268252.9
54 schema:familyName Xu
55 schema:givenName Fei
56 rdf:type schema:Person
57 N52972a81104848659624144abded94da schema:volumeNumber 2019
58 rdf:type schema:PublicationVolume
59 N6ad343da31184208a5e78ced6f763541 schema:affiliation https://www.grid.ac/institutes/grid.67293.39
60 schema:familyName Shu
61 schema:givenName Xiao-Bao
62 rdf:type schema:Person
63 N871d23e9caaf4ff6b0d4888faad4c76f rdf:first N3ea1e7cd7f7b4295859c611e28645d24
64 rdf:rest rdf:nil
65 N961a805d5de141df891c21ec951c3911 schema:issueNumber 1
66 rdf:type schema:PublicationIssue
67 Nad12dca73d9d4e738d56ead0f7e798ec schema:name doi
68 schema:value 10.1186/s13661-019-1172-6
69 rdf:type schema:PropertyValue
70 Nbb102b0efb9b4111ba88d2b2ec10aa8c schema:name dimensions_id
71 schema:value pub.1112902279
72 rdf:type schema:PropertyValue
73 Nd0b16cc62cd946c284d281a80a0c30ff schema:name readcube_id
74 schema:value f1c4ac8bec04605c5d1a9ee4330dede14f0fcfe9890ff387094382f9d2216f91
75 rdf:type schema:PropertyValue
76 Nd7679b3121fc4f6aa7f5582f5c058ca1 schema:affiliation https://www.grid.ac/institutes/grid.67293.39
77 schema:familyName Guo
78 schema:givenName Yuchen
79 rdf:type schema:Person
80 Nfbc500fa85fe4c6c8a5bea55a2f58e76 schema:affiliation https://www.grid.ac/institutes/grid.12981.33
81 schema:familyName Li
82 schema:givenName Yongjin
83 rdf:type schema:Person
84 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
85 schema:name Mathematical Sciences
86 rdf:type schema:DefinedTerm
87 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
88 schema:name Pure Mathematics
89 rdf:type schema:DefinedTerm
90 sg:journal.1136755 schema:issn 1687-2762
91 1687-2770
92 schema:name Boundary Value Problems
93 rdf:type schema:Periodical
94 sg:pub.10.1007/s00397-005-0043-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030105400
95 https://doi.org/10.1007/s00397-005-0043-5
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/s12346-019-00315-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1111367060
98 https://doi.org/10.1007/s12346-019-00315-x
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1002/mma.4405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085034463
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1002/mma.4835 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101841486
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1002/mma.5419 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110368670
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1006/jmaa.2000.7392 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042889759
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/0362-546x(80)90010-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032055094
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/0362-546x(83)90006-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027429338
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/j.amc.2015.10.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037688925
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.amc.2019.01.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111432859
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.jmaa.2018.07.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105308496
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.na.2012.10.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016759014
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1080/17442508.2018.1551400 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110229682
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1088/1751-8113/44/33/335201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005626745
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1155/2015/603893 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051346797
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1215/s0012-7094-43-01059-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064416320
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1515/ijnsns-2018-0040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107884315
129 rdf:type schema:CreativeWork
130 https://doi.org/10.4310/dpde.2011.v8.n4.a3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072459711
131 rdf:type schema:CreativeWork
132 https://www.grid.ac/institutes/grid.12981.33 schema:alternateName Sun Yat-sen University
133 schema:name Department of Mathematics, Sun Yat-sen University, GuangZhou, China
134 rdf:type schema:Organization
135 https://www.grid.ac/institutes/grid.268252.9 schema:alternateName Wilfrid Laurier University
136 schema:name Department of Mathematics, Wilfrid Laurier University, Waterloo, Canada
137 rdf:type schema:Organization
138 https://www.grid.ac/institutes/grid.67293.39 schema:alternateName Hunan University
139 schema:name Department of Mathematics and Econometrics, Hunan University, Changsha, China
140 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...