The existence and Hyers–Ulam stability of solution for an impulsive Riemann–Liouville fractional neutral functional stochastic differential equation with infinite delay ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-03-20

AUTHORS

Yuchen Guo, Xiao-Bao Shu, Yongjin Li, Fei Xu

ABSTRACT

This paper deals with the existence of solution for an impulsive Riemann–Liouville fractional neutral functional stochastic differential equation with infinite delay of order 1<β<2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1<\beta<2$\end{document} and its Hyers–Ulam stability. We prove the mild solutions for the equation using basic theorems of fractional differential equation. The existence result of the equation is obtained by Mönch’s fixed point theorem. Finally, we prove the Hyers–Ulam stability of the solution. More... »

PAGES

59

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13661-019-1172-6

DOI

http://dx.doi.org/10.1186/s13661-019-1172-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112902279


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematics and Econometrics, Hunan University, Changsha, China", 
          "id": "http://www.grid.ac/institutes/grid.67293.39", 
          "name": [
            "Department of Mathematics and Econometrics, Hunan University, Changsha, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guo", 
        "givenName": "Yuchen", 
        "id": "sg:person.016434466315.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016434466315.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics and Econometrics, Hunan University, Changsha, China", 
          "id": "http://www.grid.ac/institutes/grid.67293.39", 
          "name": [
            "Department of Mathematics and Econometrics, Hunan University, Changsha, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shu", 
        "givenName": "Xiao-Bao", 
        "id": "sg:person.014522527141.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014522527141.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Sun Yat-sen University, GuangZhou, China", 
          "id": "http://www.grid.ac/institutes/grid.12981.33", 
          "name": [
            "Department of Mathematics, Sun Yat-sen University, GuangZhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Yongjin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Wilfrid Laurier University, Waterloo, Canada", 
          "id": "http://www.grid.ac/institutes/grid.268252.9", 
          "name": [
            "Department of Mathematics, Wilfrid Laurier University, Waterloo, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Fei", 
        "id": "sg:person.01323602744.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323602744.57"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00397-005-0043-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030105400", 
          "https://doi.org/10.1007/s00397-005-0043-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12346-019-00315-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111367060", 
          "https://doi.org/10.1007/s12346-019-00315-x"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-20", 
    "datePublishedReg": "2019-03-20", 
    "description": "This paper deals with the existence of solution for an impulsive Riemann\u2013Liouville fractional neutral functional stochastic differential equation with infinite delay of order 1<\u03b2<2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$1<\\beta<2$\\end{document} and its Hyers\u2013Ulam stability. We prove the mild solutions for the equation using basic theorems of fractional differential equation. The existence result of the equation is obtained by M\u00f6nch\u2019s fixed point theorem. Finally, we prove the Hyers\u2013Ulam stability of the solution.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s13661-019-1172-6", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136755", 
        "issn": [
          "1687-2762", 
          "1687-2770"
        ], 
        "name": "Boundary Value Problems", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2019"
      }
    ], 
    "keywords": [
      "Hyers-Ulam stability", 
      "functional stochastic differential equations", 
      "stochastic differential equations", 
      "differential equations", 
      "infinite delay", 
      "fractional differential equations", 
      "existence of solutions", 
      "order 1", 
      "mild solutions", 
      "existence results", 
      "point theorem", 
      "basic theorems", 
      "equations", 
      "theorem", 
      "solution", 
      "M\u00f6nch", 
      "existence", 
      "delay", 
      "stability", 
      "results", 
      "paper", 
      "impulsive Riemann\u2013Liouville fractional neutral functional stochastic differential equation", 
      "Riemann\u2013Liouville fractional neutral functional stochastic differential equation", 
      "fractional neutral functional stochastic differential equation", 
      "neutral functional stochastic differential equation"
    ], 
    "name": "The existence and Hyers\u2013Ulam stability of solution for an impulsive Riemann\u2013Liouville fractional neutral functional stochastic differential equation with infinite delay of order 1<\u03b2<2", 
    "pagination": "59", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112902279"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13661-019-1172-6"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13661-019-1172-6", 
      "https://app.dimensions.ai/details/publication/pub.1112902279"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_799.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s13661-019-1172-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13661-019-1172-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13661-019-1172-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13661-019-1172-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13661-019-1172-6'


 

This table displays all metadata directly associated to this object as RDF triples.

117 TRIPLES      22 PREDICATES      52 URIs      42 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13661-019-1172-6 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N3b0f74557a4d4c219c727151797e9623
4 schema:citation sg:pub.10.1007/s00397-005-0043-5
5 sg:pub.10.1007/s12346-019-00315-x
6 schema:datePublished 2019-03-20
7 schema:datePublishedReg 2019-03-20
8 schema:description This paper deals with the existence of solution for an impulsive Riemann–Liouville fractional neutral functional stochastic differential equation with infinite delay of order 1<β<2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1<\beta<2$\end{document} and its Hyers–Ulam stability. We prove the mild solutions for the equation using basic theorems of fractional differential equation. The existence result of the equation is obtained by Mönch’s fixed point theorem. Finally, we prove the Hyers–Ulam stability of the solution.
9 schema:genre article
10 schema:inLanguage en
11 schema:isAccessibleForFree true
12 schema:isPartOf N0f17b6372f5e404c8a0168b9b5bf6964
13 N58520981c3b644a8aba76ca7a186bfa2
14 sg:journal.1136755
15 schema:keywords Hyers-Ulam stability
16 Mönch
17 Riemann–Liouville fractional neutral functional stochastic differential equation
18 basic theorems
19 delay
20 differential equations
21 equations
22 existence
23 existence of solutions
24 existence results
25 fractional differential equations
26 fractional neutral functional stochastic differential equation
27 functional stochastic differential equations
28 impulsive Riemann–Liouville fractional neutral functional stochastic differential equation
29 infinite delay
30 mild solutions
31 neutral functional stochastic differential equation
32 order 1
33 paper
34 point theorem
35 results
36 solution
37 stability
38 stochastic differential equations
39 theorem
40 schema:name The existence and Hyers–Ulam stability of solution for an impulsive Riemann–Liouville fractional neutral functional stochastic differential equation with infinite delay of order 1<β<2
41 schema:pagination 59
42 schema:productId N34bb657baf6d4b5a8cd3bd52016b4677
43 Na5a4f6bb2f76401c9e77f6a10c363f5d
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112902279
45 https://doi.org/10.1186/s13661-019-1172-6
46 schema:sdDatePublished 2021-11-01T18:35
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher N42ed3c55bdea47d281358deade3f0814
49 schema:url https://doi.org/10.1186/s13661-019-1172-6
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N0f17b6372f5e404c8a0168b9b5bf6964 schema:volumeNumber 2019
54 rdf:type schema:PublicationVolume
55 N30c5edeb66794ad4a8ed850e43309d56 rdf:first sg:person.014522527141.63
56 rdf:rest N72c2005a4bdc4ec8a6f829caa8cc2b22
57 N34bb657baf6d4b5a8cd3bd52016b4677 schema:name doi
58 schema:value 10.1186/s13661-019-1172-6
59 rdf:type schema:PropertyValue
60 N3b0f74557a4d4c219c727151797e9623 rdf:first sg:person.016434466315.31
61 rdf:rest N30c5edeb66794ad4a8ed850e43309d56
62 N425230a5744943b59fad834f875e5cdb schema:affiliation grid-institutes:grid.12981.33
63 schema:familyName Li
64 schema:givenName Yongjin
65 rdf:type schema:Person
66 N42ed3c55bdea47d281358deade3f0814 schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 N58520981c3b644a8aba76ca7a186bfa2 schema:issueNumber 1
69 rdf:type schema:PublicationIssue
70 N72c2005a4bdc4ec8a6f829caa8cc2b22 rdf:first N425230a5744943b59fad834f875e5cdb
71 rdf:rest Nff136feec09345ca956607d4f1dae574
72 Na5a4f6bb2f76401c9e77f6a10c363f5d schema:name dimensions_id
73 schema:value pub.1112902279
74 rdf:type schema:PropertyValue
75 Nff136feec09345ca956607d4f1dae574 rdf:first sg:person.01323602744.57
76 rdf:rest rdf:nil
77 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
78 schema:name Mathematical Sciences
79 rdf:type schema:DefinedTerm
80 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
81 schema:name Statistics
82 rdf:type schema:DefinedTerm
83 sg:journal.1136755 schema:issn 1687-2762
84 1687-2770
85 schema:name Boundary Value Problems
86 schema:publisher Springer Nature
87 rdf:type schema:Periodical
88 sg:person.01323602744.57 schema:affiliation grid-institutes:grid.268252.9
89 schema:familyName Xu
90 schema:givenName Fei
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323602744.57
92 rdf:type schema:Person
93 sg:person.014522527141.63 schema:affiliation grid-institutes:grid.67293.39
94 schema:familyName Shu
95 schema:givenName Xiao-Bao
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014522527141.63
97 rdf:type schema:Person
98 sg:person.016434466315.31 schema:affiliation grid-institutes:grid.67293.39
99 schema:familyName Guo
100 schema:givenName Yuchen
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016434466315.31
102 rdf:type schema:Person
103 sg:pub.10.1007/s00397-005-0043-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030105400
104 https://doi.org/10.1007/s00397-005-0043-5
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/s12346-019-00315-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1111367060
107 https://doi.org/10.1007/s12346-019-00315-x
108 rdf:type schema:CreativeWork
109 grid-institutes:grid.12981.33 schema:alternateName Department of Mathematics, Sun Yat-sen University, GuangZhou, China
110 schema:name Department of Mathematics, Sun Yat-sen University, GuangZhou, China
111 rdf:type schema:Organization
112 grid-institutes:grid.268252.9 schema:alternateName Department of Mathematics, Wilfrid Laurier University, Waterloo, Canada
113 schema:name Department of Mathematics, Wilfrid Laurier University, Waterloo, Canada
114 rdf:type schema:Organization
115 grid-institutes:grid.67293.39 schema:alternateName Department of Mathematics and Econometrics, Hunan University, Changsha, China
116 schema:name Department of Mathematics and Econometrics, Hunan University, Changsha, China
117 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...