Block pulse functions for solving fractional Poisson type equations with Dirichlet and Neumann boundary conditions View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-03-14

AUTHORS

Jiaquan Xie, Qingxue Huang, Fuqiang Zhao, Hailian Gui

ABSTRACT

In this study, the numerical technique based on two-dimensional block pulse functions (2D-BPFs) has been developed to approximate the solution of fractional Poisson type equations with Dirichlet and Neumann boundary conditions. These functions are orthonormal and have compact support on [0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$[ 0,1 ]$\end{document}. The proposed method reduces the original problems to a system of linear algebra equations that can be solved easily by any usual numerical method. The obtained numerical results have been compared with those obtained by the Legendre and CAS wavelet methods. In addition an error analysis of the method is discussed. Illustrative examples are included to demonstrate the validity and robustness of the technique. More... »

PAGES

32

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13661-017-0766-0

DOI

http://dx.doi.org/10.1186/s13661-017-0766-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1084252650


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Shanxi Provincial Key Laboratory of Metallurgical Device Design Theory and Technology, Taiyuan, Shanxi, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "College of Mechanical Engineering, Taiyuan University of Science and Technology, 030024, Taiyuan, Shanxi, China", 
            "Shanxi Provincial Key Laboratory of Metallurgical Device Design Theory and Technology, Taiyuan, Shanxi, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xie", 
        "givenName": "Jiaquan", 
        "id": "sg:person.016610125417.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016610125417.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "College of Mechanical Engineering, Taiyuan University of Technology, 030024, Taiyuan, Shanxi, China", 
          "id": "http://www.grid.ac/institutes/grid.440656.5", 
          "name": [
            "College of Mechanical Engineering, Taiyuan University of Science and Technology, 030024, Taiyuan, Shanxi, China", 
            "College of Mechanical Engineering, Taiyuan University of Technology, 030024, Taiyuan, Shanxi, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huang", 
        "givenName": "Qingxue", 
        "id": "sg:person.010644725061.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010644725061.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanxi Provincial Key Laboratory of Metallurgical Device Design Theory and Technology, Taiyuan, Shanxi, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "College of Mechanical Engineering, Taiyuan University of Science and Technology, 030024, Taiyuan, Shanxi, China", 
            "Shanxi Provincial Key Laboratory of Metallurgical Device Design Theory and Technology, Taiyuan, Shanxi, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Fuqiang", 
        "id": "sg:person.013622223417.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013622223417.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanxi Provincial Key Laboratory of Metallurgical Device Design Theory and Technology, Taiyuan, Shanxi, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "College of Mechanical Engineering, Taiyuan University of Science and Technology, 030024, Taiyuan, Shanxi, China", 
            "Shanxi Provincial Key Laboratory of Metallurgical Device Design Theory and Technology, Taiyuan, Shanxi, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gui", 
        "givenName": "Hailian", 
        "id": "sg:person.011637514365.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011637514365.82"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bfb0009162", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109719109", 
          "https://doi.org/10.1007/bfb0009162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-7091-2664-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042300394", 
          "https://doi.org/10.1007/978-3-7091-2664-6"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-03-14", 
    "datePublishedReg": "2017-03-14", 
    "description": "In this study, the numerical technique based on two-dimensional block pulse functions (2D-BPFs) has been developed to approximate the solution of fractional Poisson type equations with Dirichlet and Neumann boundary conditions. These functions are orthonormal and have compact support on [0,1]\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$[ 0,1 ]$\\end{document}. The proposed method reduces the original problems to a system of linear algebra equations that can be solved easily by any usual numerical method. The obtained numerical results have been compared with those obtained by the Legendre and CAS wavelet methods. In addition an error analysis of the method is discussed. Illustrative examples are included to demonstrate the validity and robustness of the technique.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s13661-017-0766-0", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136755", 
        "issn": [
          "1687-2762", 
          "1687-2770"
        ], 
        "name": "Boundary Value Problems", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2017"
      }
    ], 
    "keywords": [
      "block-pulse functions", 
      "Poisson-type equation", 
      "Neumann boundary conditions", 
      "two-dimensional block-pulse functions", 
      "pulse functions", 
      "type equation", 
      "CAS wavelet method", 
      "usual numerical methods", 
      "linear algebra equations", 
      "boundary conditions", 
      "algebra equations", 
      "original problem", 
      "numerical techniques", 
      "numerical method", 
      "compact support", 
      "illustrative example", 
      "wavelet method", 
      "equations", 
      "numerical results", 
      "error analysis", 
      "Dirichlet", 
      "Legendre", 
      "function", 
      "robustness", 
      "problem", 
      "solution", 
      "technique", 
      "validity", 
      "conditions", 
      "system", 
      "results", 
      "analysis", 
      "addition", 
      "study", 
      "support", 
      "method", 
      "example"
    ], 
    "name": "Block pulse functions for solving fractional Poisson type equations with Dirichlet and Neumann boundary conditions", 
    "pagination": "32", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1084252650"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13661-017-0766-0"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13661-017-0766-0", 
      "https://app.dimensions.ai/details/publication/pub.1084252650"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_732.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s13661-017-0766-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13661-017-0766-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13661-017-0766-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13661-017-0766-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13661-017-0766-0'


 

This table displays all metadata directly associated to this object as RDF triples.

128 TRIPLES      21 PREDICATES      63 URIs      53 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13661-017-0766-0 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author N88c09502121844abbe3bb626f28db254
4 schema:citation sg:pub.10.1007/978-3-7091-2664-6
5 sg:pub.10.1007/bfb0009162
6 schema:datePublished 2017-03-14
7 schema:datePublishedReg 2017-03-14
8 schema:description In this study, the numerical technique based on two-dimensional block pulse functions (2D-BPFs) has been developed to approximate the solution of fractional Poisson type equations with Dirichlet and Neumann boundary conditions. These functions are orthonormal and have compact support on [0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$[ 0,1 ]$\end{document}. The proposed method reduces the original problems to a system of linear algebra equations that can be solved easily by any usual numerical method. The obtained numerical results have been compared with those obtained by the Legendre and CAS wavelet methods. In addition an error analysis of the method is discussed. Illustrative examples are included to demonstrate the validity and robustness of the technique.
9 schema:genre article
10 schema:isAccessibleForFree true
11 schema:isPartOf N661316216fc4456f8602c193d3e13daa
12 Ndae807b3585e4ed09532cfbd3e40fe3b
13 sg:journal.1136755
14 schema:keywords CAS wavelet method
15 Dirichlet
16 Legendre
17 Neumann boundary conditions
18 Poisson-type equation
19 addition
20 algebra equations
21 analysis
22 block-pulse functions
23 boundary conditions
24 compact support
25 conditions
26 equations
27 error analysis
28 example
29 function
30 illustrative example
31 linear algebra equations
32 method
33 numerical method
34 numerical results
35 numerical techniques
36 original problem
37 problem
38 pulse functions
39 results
40 robustness
41 solution
42 study
43 support
44 system
45 technique
46 two-dimensional block-pulse functions
47 type equation
48 usual numerical methods
49 validity
50 wavelet method
51 schema:name Block pulse functions for solving fractional Poisson type equations with Dirichlet and Neumann boundary conditions
52 schema:pagination 32
53 schema:productId Ncc8710fda1dc44309333c699629045e2
54 Ne643bf5fc9114344a0f99827a761a5be
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084252650
56 https://doi.org/10.1186/s13661-017-0766-0
57 schema:sdDatePublished 2022-12-01T06:36
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher N6b04ce5a8a3f409c8e796c106e203be0
60 schema:url https://doi.org/10.1186/s13661-017-0766-0
61 sgo:license sg:explorer/license/
62 sgo:sdDataset articles
63 rdf:type schema:ScholarlyArticle
64 N661316216fc4456f8602c193d3e13daa schema:volumeNumber 2017
65 rdf:type schema:PublicationVolume
66 N6b04ce5a8a3f409c8e796c106e203be0 schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 N88c09502121844abbe3bb626f28db254 rdf:first sg:person.016610125417.99
69 rdf:rest Nc95c7c268593407e9f1aa342f2794953
70 Nb5576cf91e67444d92f4a3f54c467e00 rdf:first sg:person.011637514365.82
71 rdf:rest rdf:nil
72 Nc600edb47f93480c800a94f3b2f1bd2e rdf:first sg:person.013622223417.77
73 rdf:rest Nb5576cf91e67444d92f4a3f54c467e00
74 Nc95c7c268593407e9f1aa342f2794953 rdf:first sg:person.010644725061.45
75 rdf:rest Nc600edb47f93480c800a94f3b2f1bd2e
76 Ncc8710fda1dc44309333c699629045e2 schema:name dimensions_id
77 schema:value pub.1084252650
78 rdf:type schema:PropertyValue
79 Ndae807b3585e4ed09532cfbd3e40fe3b schema:issueNumber 1
80 rdf:type schema:PublicationIssue
81 Ne643bf5fc9114344a0f99827a761a5be schema:name doi
82 schema:value 10.1186/s13661-017-0766-0
83 rdf:type schema:PropertyValue
84 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
85 schema:name Mathematical Sciences
86 rdf:type schema:DefinedTerm
87 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
88 schema:name Numerical and Computational Mathematics
89 rdf:type schema:DefinedTerm
90 sg:journal.1136755 schema:issn 1687-2762
91 1687-2770
92 schema:name Boundary Value Problems
93 schema:publisher Springer Nature
94 rdf:type schema:Periodical
95 sg:person.010644725061.45 schema:affiliation grid-institutes:grid.440656.5
96 schema:familyName Huang
97 schema:givenName Qingxue
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010644725061.45
99 rdf:type schema:Person
100 sg:person.011637514365.82 schema:affiliation grid-institutes:None
101 schema:familyName Gui
102 schema:givenName Hailian
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011637514365.82
104 rdf:type schema:Person
105 sg:person.013622223417.77 schema:affiliation grid-institutes:None
106 schema:familyName Zhao
107 schema:givenName Fuqiang
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013622223417.77
109 rdf:type schema:Person
110 sg:person.016610125417.99 schema:affiliation grid-institutes:None
111 schema:familyName Xie
112 schema:givenName Jiaquan
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016610125417.99
114 rdf:type schema:Person
115 sg:pub.10.1007/978-3-7091-2664-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042300394
116 https://doi.org/10.1007/978-3-7091-2664-6
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/bfb0009162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109719109
119 https://doi.org/10.1007/bfb0009162
120 rdf:type schema:CreativeWork
121 grid-institutes:None schema:alternateName Shanxi Provincial Key Laboratory of Metallurgical Device Design Theory and Technology, Taiyuan, Shanxi, China
122 schema:name College of Mechanical Engineering, Taiyuan University of Science and Technology, 030024, Taiyuan, Shanxi, China
123 Shanxi Provincial Key Laboratory of Metallurgical Device Design Theory and Technology, Taiyuan, Shanxi, China
124 rdf:type schema:Organization
125 grid-institutes:grid.440656.5 schema:alternateName College of Mechanical Engineering, Taiyuan University of Technology, 030024, Taiyuan, Shanxi, China
126 schema:name College of Mechanical Engineering, Taiyuan University of Science and Technology, 030024, Taiyuan, Shanxi, China
127 College of Mechanical Engineering, Taiyuan University of Technology, 030024, Taiyuan, Shanxi, China
128 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...