Heat and mass transfer of nanofluid through an impulsively vertical stretching surface using the spectral relaxation method View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-12

AUTHORS

Nageeb AH Haroun, Precious Sibanda, Sabyasachi Mondal, Sandile S Motsa, Mohammad M Rashidi

ABSTRACT

In this paper, we investigate heat and mass transfer in a magnetohydrodynamic nanofluid flow due to an impulsively started stretching surface. The flow is subject to a heat source, a chemical reaction, Brownian motion and thermophoretic parameters which are assumed to be significant. We have further assumed that the nanoparticle volume fraction at the wall may be actively controlled. The physical problem is modeled using systems of nonlinear differential equations which have been solved numerically using the spectral relaxation method. Comparing with previously published results by Khan and Pop (Int. J. Heat Mass Transf. 53:2477-2483, 2010) shows an excellent agreement. Some of the particular findings are that the skin friction coefficient decreases with an increase in the nanoparticle volume fraction, the heat transfer coefficient decreases with an increase in the nanoparticle volume fraction and that the mass transfer coefficient increases with an increase in the nanoparticle volume fraction. More... »

PAGES

161

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13661-015-0424-3

DOI

http://dx.doi.org/10.1186/s13661-015-0424-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1022824153


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of KwaZulu-Natal", 
          "id": "https://www.grid.ac/institutes/grid.16463.36", 
          "name": [
            "School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, Pietermaritzburg, South Africa"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Haroun", 
        "givenName": "Nageeb AH", 
        "id": "sg:person.0635641255.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635641255.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of KwaZulu-Natal", 
          "id": "https://www.grid.ac/institutes/grid.16463.36", 
          "name": [
            "School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, Pietermaritzburg, South Africa"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sibanda", 
        "givenName": "Precious", 
        "id": "sg:person.01161752046.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161752046.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of KwaZulu-Natal", 
          "id": "https://www.grid.ac/institutes/grid.16463.36", 
          "name": [
            "School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, Pietermaritzburg, South Africa"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mondal", 
        "givenName": "Sabyasachi", 
        "id": "sg:person.013255403515.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013255403515.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of KwaZulu-Natal", 
          "id": "https://www.grid.ac/institutes/grid.16463.36", 
          "name": [
            "School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, Pietermaritzburg, South Africa"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Motsa", 
        "givenName": "Sandile S", 
        "id": "sg:person.011260406133.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011260406133.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tongji University", 
          "id": "https://www.grid.ac/institutes/grid.24516.34", 
          "name": [
            "Shanghai Key Lab of Vehicle Aerodynamics and Vehicle Thermal Management Systems, Tongji University, 4800 Cao An Rd., Jiading, 201804, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rashidi", 
        "givenName": "Mohammad M", 
        "id": "sg:person.016573246311.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016573246311.03"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1299/jtst.7.104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000664822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatfluidflow.2008.04.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001084269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amc.2014.12.116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001228927"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijthermalsci.2009.07.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003961151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.icheatmasstransfer.2012.07.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004338280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00231-005-0640-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005350926", 
          "https://doi.org/10.1007/s00231-005-0640-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00231-005-0640-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005350926", 
          "https://doi.org/10.1007/s00231-005-0640-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2010.01.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006685661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatfluidflow.2007.07.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007442923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1108/09615531111162837", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007962341"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5402/2012/465864", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008286818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00986445.2010.520232", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008735659"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nucengdes.2012.03.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011326511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00231-007-0322-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012983490", 
          "https://doi.org/10.1007/s00231-007-0322-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00231-007-0322-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012983490", 
          "https://doi.org/10.1007/s00231-007-0322-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2015.02.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014528455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compfluid.2014.08.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014588662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2009.07.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017544430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2478/s11534-013-0182-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019072601", 
          "https://doi.org/10.2478/s11534-013-0182-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11012-013-9805-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019632020", 
          "https://doi.org/10.1007/s11012-013-9805-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13661-015-0289-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020256274", 
          "https://doi.org/10.1186/s13661-015-0289-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13661-015-0289-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020256274", 
          "https://doi.org/10.1186/s13661-015-0289-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1556-276x-6-314", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020510071", 
          "https://doi.org/10.1186/1556-276x-6-314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2008.04.043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020856998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cnsns.2011.02.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022354280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/128_2011_150", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023072172", 
          "https://doi.org/10.1007/128_2011_150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/128_2011_150", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023072172", 
          "https://doi.org/10.1007/128_2011_150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cnsns.2004.09.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030377061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00986445.2013.766882", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032263139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044433660"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1556-276x-7-229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046152679", 
          "https://doi.org/10.1186/1556-276x-7-229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2014/341964", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047638056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2011/876437", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052477742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1700493", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057770936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.2150834", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062077311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.2150834", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062077311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0219519414500110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062997689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/anona-2015-0027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067520416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470180693", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470180693", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661624"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-12", 
    "datePublishedReg": "2015-12-01", 
    "description": "In this paper, we investigate heat and mass transfer in a magnetohydrodynamic nanofluid flow due to an impulsively started stretching surface. The flow is subject to a heat source, a chemical reaction, Brownian motion and thermophoretic parameters which are assumed to be significant. We have further assumed that the nanoparticle volume fraction at the wall may be actively controlled. The physical problem is modeled using systems of nonlinear differential equations which have been solved numerically using the spectral relaxation method. Comparing with previously published results by Khan and Pop (Int. J. Heat Mass Transf. 53:2477-2483, 2010) shows an excellent agreement. Some of the particular findings are that the skin friction coefficient decreases with an increase in the nanoparticle volume fraction, the heat transfer coefficient decreases with an increase in the nanoparticle volume fraction and that the mass transfer coefficient increases with an increase in the nanoparticle volume fraction.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s13661-015-0424-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136755", 
        "issn": [
          "1687-2762", 
          "1687-2770"
        ], 
        "name": "Boundary Value Problems", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2015"
      }
    ], 
    "name": "Heat and mass transfer of nanofluid through an impulsively vertical stretching surface using the spectral relaxation method", 
    "pagination": "161", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6cbd3b2d5ff8aedf1ba4ccc09773c1c45944dda1c8503c4bf2b561c3e0a3f9ea"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13661-015-0424-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1022824153"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13661-015-0424-3", 
      "https://app.dimensions.ai/details/publication/pub.1022824153"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88248_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2Fs13661-015-0424-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13661-015-0424-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13661-015-0424-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13661-015-0424-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13661-015-0424-3'


 

This table displays all metadata directly associated to this object as RDF triples.

202 TRIPLES      21 PREDICATES      61 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13661-015-0424-3 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author Nfb173bfda91c431c9bd1641277ec0b1d
4 schema:citation sg:pub.10.1007/128_2011_150
5 sg:pub.10.1007/s00231-005-0640-y
6 sg:pub.10.1007/s00231-007-0322-z
7 sg:pub.10.1007/s11012-013-9805-9
8 sg:pub.10.1186/1556-276x-6-314
9 sg:pub.10.1186/1556-276x-7-229
10 sg:pub.10.1186/s13661-015-0289-5
11 sg:pub.10.2478/s11534-013-0182-8
12 https://doi.org/10.1002/9780470180693
13 https://doi.org/10.1016/j.amc.2014.12.116
14 https://doi.org/10.1016/j.cnsns.2004.09.004
15 https://doi.org/10.1016/j.cnsns.2011.02.024
16 https://doi.org/10.1016/j.compfluid.2014.08.001
17 https://doi.org/10.1016/j.icheatmasstransfer.2012.07.026
18 https://doi.org/10.1016/j.ijheatfluidflow.2007.07.001
19 https://doi.org/10.1016/j.ijheatfluidflow.2008.04.009
20 https://doi.org/10.1016/j.ijheatmasstransfer.2008.04.043
21 https://doi.org/10.1016/j.ijheatmasstransfer.2009.07.024
22 https://doi.org/10.1016/j.ijheatmasstransfer.2010.01.032
23 https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.009
24 https://doi.org/10.1016/j.ijheatmasstransfer.2015.02.007
25 https://doi.org/10.1016/j.ijthermalsci.2009.07.015
26 https://doi.org/10.1016/j.nucengdes.2012.03.025
27 https://doi.org/10.1063/1.1700493
28 https://doi.org/10.1080/00986445.2010.520232
29 https://doi.org/10.1080/00986445.2013.766882
30 https://doi.org/10.1108/09615531111162837
31 https://doi.org/10.1115/1.2150834
32 https://doi.org/10.1142/s0219519414500110
33 https://doi.org/10.1155/2011/876437
34 https://doi.org/10.1155/2014/341964
35 https://doi.org/10.1299/jtst.7.104
36 https://doi.org/10.1515/anona-2015-0027
37 https://doi.org/10.5402/2012/465864
38 schema:datePublished 2015-12
39 schema:datePublishedReg 2015-12-01
40 schema:description In this paper, we investigate heat and mass transfer in a magnetohydrodynamic nanofluid flow due to an impulsively started stretching surface. The flow is subject to a heat source, a chemical reaction, Brownian motion and thermophoretic parameters which are assumed to be significant. We have further assumed that the nanoparticle volume fraction at the wall may be actively controlled. The physical problem is modeled using systems of nonlinear differential equations which have been solved numerically using the spectral relaxation method. Comparing with previously published results by Khan and Pop (Int. J. Heat Mass Transf. 53:2477-2483, 2010) shows an excellent agreement. Some of the particular findings are that the skin friction coefficient decreases with an increase in the nanoparticle volume fraction, the heat transfer coefficient decreases with an increase in the nanoparticle volume fraction and that the mass transfer coefficient increases with an increase in the nanoparticle volume fraction.
41 schema:genre research_article
42 schema:inLanguage en
43 schema:isAccessibleForFree true
44 schema:isPartOf N0a25d16cdb82478ba6229d77df312f31
45 Ncf20ae4bc602495587ed82032d8749b3
46 sg:journal.1136755
47 schema:name Heat and mass transfer of nanofluid through an impulsively vertical stretching surface using the spectral relaxation method
48 schema:pagination 161
49 schema:productId N29f375f7d8734886b6b50e158a5962c9
50 N3fc3e7c8b9a54638bfd1b4d6bcf4d9db
51 N99f9c444d5274442b1d75acf3acbc14c
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022824153
53 https://doi.org/10.1186/s13661-015-0424-3
54 schema:sdDatePublished 2019-04-11T13:10
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher N9ac36581bea94e74ba58ef08e7d1ec20
57 schema:url http://link.springer.com/10.1186%2Fs13661-015-0424-3
58 sgo:license sg:explorer/license/
59 sgo:sdDataset articles
60 rdf:type schema:ScholarlyArticle
61 N05ad420a90364d18a728edac99cf048e rdf:first sg:person.011260406133.31
62 rdf:rest N13ae48a840984defa1236e725c3a9cc8
63 N0a25d16cdb82478ba6229d77df312f31 schema:volumeNumber 2015
64 rdf:type schema:PublicationVolume
65 N13ae48a840984defa1236e725c3a9cc8 rdf:first sg:person.016573246311.03
66 rdf:rest rdf:nil
67 N29f375f7d8734886b6b50e158a5962c9 schema:name doi
68 schema:value 10.1186/s13661-015-0424-3
69 rdf:type schema:PropertyValue
70 N37e50120188c422d9ccb43a02a9c1cd6 rdf:first sg:person.01161752046.79
71 rdf:rest N99555842914541ef9267fc8425605fb2
72 N3fc3e7c8b9a54638bfd1b4d6bcf4d9db schema:name readcube_id
73 schema:value 6cbd3b2d5ff8aedf1ba4ccc09773c1c45944dda1c8503c4bf2b561c3e0a3f9ea
74 rdf:type schema:PropertyValue
75 N99555842914541ef9267fc8425605fb2 rdf:first sg:person.013255403515.11
76 rdf:rest N05ad420a90364d18a728edac99cf048e
77 N99f9c444d5274442b1d75acf3acbc14c schema:name dimensions_id
78 schema:value pub.1022824153
79 rdf:type schema:PropertyValue
80 N9ac36581bea94e74ba58ef08e7d1ec20 schema:name Springer Nature - SN SciGraph project
81 rdf:type schema:Organization
82 Ncf20ae4bc602495587ed82032d8749b3 schema:issueNumber 1
83 rdf:type schema:PublicationIssue
84 Nfb173bfda91c431c9bd1641277ec0b1d rdf:first sg:person.0635641255.88
85 rdf:rest N37e50120188c422d9ccb43a02a9c1cd6
86 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
87 schema:name Engineering
88 rdf:type schema:DefinedTerm
89 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
90 schema:name Interdisciplinary Engineering
91 rdf:type schema:DefinedTerm
92 sg:journal.1136755 schema:issn 1687-2762
93 1687-2770
94 schema:name Boundary Value Problems
95 rdf:type schema:Periodical
96 sg:person.011260406133.31 schema:affiliation https://www.grid.ac/institutes/grid.16463.36
97 schema:familyName Motsa
98 schema:givenName Sandile S
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011260406133.31
100 rdf:type schema:Person
101 sg:person.01161752046.79 schema:affiliation https://www.grid.ac/institutes/grid.16463.36
102 schema:familyName Sibanda
103 schema:givenName Precious
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161752046.79
105 rdf:type schema:Person
106 sg:person.013255403515.11 schema:affiliation https://www.grid.ac/institutes/grid.16463.36
107 schema:familyName Mondal
108 schema:givenName Sabyasachi
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013255403515.11
110 rdf:type schema:Person
111 sg:person.016573246311.03 schema:affiliation https://www.grid.ac/institutes/grid.24516.34
112 schema:familyName Rashidi
113 schema:givenName Mohammad M
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016573246311.03
115 rdf:type schema:Person
116 sg:person.0635641255.88 schema:affiliation https://www.grid.ac/institutes/grid.16463.36
117 schema:familyName Haroun
118 schema:givenName Nageeb AH
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635641255.88
120 rdf:type schema:Person
121 sg:pub.10.1007/128_2011_150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023072172
122 https://doi.org/10.1007/128_2011_150
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/s00231-005-0640-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1005350926
125 https://doi.org/10.1007/s00231-005-0640-y
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/s00231-007-0322-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1012983490
128 https://doi.org/10.1007/s00231-007-0322-z
129 rdf:type schema:CreativeWork
130 sg:pub.10.1007/s11012-013-9805-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019632020
131 https://doi.org/10.1007/s11012-013-9805-9
132 rdf:type schema:CreativeWork
133 sg:pub.10.1186/1556-276x-6-314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020510071
134 https://doi.org/10.1186/1556-276x-6-314
135 rdf:type schema:CreativeWork
136 sg:pub.10.1186/1556-276x-7-229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046152679
137 https://doi.org/10.1186/1556-276x-7-229
138 rdf:type schema:CreativeWork
139 sg:pub.10.1186/s13661-015-0289-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020256274
140 https://doi.org/10.1186/s13661-015-0289-5
141 rdf:type schema:CreativeWork
142 sg:pub.10.2478/s11534-013-0182-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019072601
143 https://doi.org/10.2478/s11534-013-0182-8
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1002/9780470180693 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098661624
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.amc.2014.12.116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001228927
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.cnsns.2004.09.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030377061
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.cnsns.2011.02.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022354280
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.compfluid.2014.08.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014588662
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.icheatmasstransfer.2012.07.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004338280
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.ijheatfluidflow.2007.07.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007442923
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.ijheatfluidflow.2008.04.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001084269
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.ijheatmasstransfer.2008.04.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020856998
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.ijheatmasstransfer.2009.07.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017544430
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.ijheatmasstransfer.2010.01.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006685661
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044433660
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.ijheatmasstransfer.2015.02.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014528455
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.ijthermalsci.2009.07.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003961151
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.nucengdes.2012.03.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011326511
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1063/1.1700493 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057770936
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1080/00986445.2010.520232 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008735659
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1080/00986445.2013.766882 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032263139
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1108/09615531111162837 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007962341
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1115/1.2150834 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062077311
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1142/s0219519414500110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062997689
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1155/2011/876437 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052477742
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1155/2014/341964 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047638056
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1299/jtst.7.104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000664822
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1515/anona-2015-0027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067520416
194 rdf:type schema:CreativeWork
195 https://doi.org/10.5402/2012/465864 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008286818
196 rdf:type schema:CreativeWork
197 https://www.grid.ac/institutes/grid.16463.36 schema:alternateName University of KwaZulu-Natal
198 schema:name School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, Pietermaritzburg, South Africa
199 rdf:type schema:Organization
200 https://www.grid.ac/institutes/grid.24516.34 schema:alternateName Tongji University
201 schema:name Shanghai Key Lab of Vehicle Aerodynamics and Vehicle Thermal Management Systems, Tongji University, 4800 Cao An Rd., Jiading, 201804, Shanghai, China
202 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...