Finite-time stabilization of switched nonlinear singular systems with asynchronous switching View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-12-07

AUTHORS

Jing Wang, Xingtao Wang

ABSTRACT

This paper is concerned with the finite-time stabilization of a class of switched nonlinear singular systems under asynchronous control. Asynchronism here refers to the delays in switching between the controller and the subsystem. First, the dynamic decomposition technique is used to prove that such a switched singular system is regular and impulse-free. Secondly, based on the state solutions of the closed-loop system in the matched time period and the mismatched time period of the system instead of constructing a Lyapunov function, the sufficient conditions for the finite-time stability of the asynchronous switched singular system are given, there is no limit to the stability of subsystems. Then, the mode-dependent state feedback controller that makes the original system stable is derived in the form of strict linear matrix inequalities. Finally, numerical examples are given to verify the feasibility and validity of the results. More... »

PAGES

191

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13660-021-02728-2

DOI

http://dx.doi.org/10.1186/s13660-021-02728-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1143693979


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Harbin Institute of Technology, Xidazhi Road, 150000, Harbin, P.R. China", 
          "id": "http://www.grid.ac/institutes/grid.19373.3f", 
          "name": [
            "Department of Mathematics, Harbin Institute of Technology, Xidazhi Road, 150000, Harbin, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Jing", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Harbin Institute of Technology, Xidazhi Road, 150000, Harbin, P.R. China", 
          "id": "http://www.grid.ac/institutes/grid.19373.3f", 
          "name": [
            "Department of Mathematics, Harbin Institute of Technology, Xidazhi Road, 150000, Harbin, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Xingtao", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s12555-012-0550-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008092743", 
          "https://doi.org/10.1007/s12555-012-0550-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4419-6397-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024238701", 
          "https://doi.org/10.1007/978-1-4419-6397-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12555-018-0794-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1113945581", 
          "https://doi.org/10.1007/s12555-018-0794-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13662-019-2065-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1112945827", 
          "https://doi.org/10.1186/s13662-019-2065-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-12-07", 
    "datePublishedReg": "2021-12-07", 
    "description": "This paper is concerned with the finite-time stabilization of a class of switched nonlinear singular systems under asynchronous control. Asynchronism here refers to the delays in switching between the controller and the subsystem. First, the dynamic decomposition technique is used to prove that such a switched singular system is regular and impulse-free. Secondly, based on the state solutions of the closed-loop system in the matched time period and the mismatched time period of the system instead of constructing a Lyapunov function, the sufficient conditions for the finite-time stability of the asynchronous switched singular system are given, there is no limit to the stability of subsystems. Then, the mode-dependent state feedback controller that makes the original system stable is derived in the form of strict linear matrix inequalities. Finally, numerical examples are given to verify the feasibility and validity of the results.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s13660-021-02728-2", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136856", 
        "issn": [
          "1025-5834", 
          "1029-242X"
        ], 
        "name": "Journal of Inequalities and Applications", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2021"
      }
    ], 
    "keywords": [
      "nonlinear singular systems", 
      "finite-time stabilization", 
      "switched singular systems", 
      "singular systems", 
      "mode-dependent state feedback controller", 
      "strict linear matrix inequalities", 
      "finite-time stability", 
      "linear matrix inequalities", 
      "state feedback controller", 
      "closed-loop system", 
      "dynamic decomposition technique", 
      "stability of subsystems", 
      "matrix inequalities", 
      "Lyapunov function", 
      "feedback controller", 
      "asynchronous switching", 
      "original system", 
      "numerical examples", 
      "sufficient conditions", 
      "state solutions", 
      "decomposition technique", 
      "asynchronous control", 
      "controller", 
      "subsystems", 
      "system", 
      "inequality", 
      "solution", 
      "class", 
      "stability", 
      "asynchronism", 
      "stabilization", 
      "delay", 
      "switching", 
      "validity", 
      "limit", 
      "function", 
      "technique", 
      "form", 
      "time period", 
      "conditions", 
      "results", 
      "control", 
      "feasibility", 
      "period", 
      "example", 
      "paper"
    ], 
    "name": "Finite-time stabilization of switched nonlinear singular systems with asynchronous switching", 
    "pagination": "191", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1143693979"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13660-021-02728-2"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13660-021-02728-2", 
      "https://app.dimensions.ai/details/publication/pub.1143693979"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_898.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s13660-021-02728-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13660-021-02728-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13660-021-02728-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13660-021-02728-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13660-021-02728-2'


 

This table displays all metadata directly associated to this object as RDF triples.

125 TRIPLES      22 PREDICATES      75 URIs      63 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13660-021-02728-2 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author N776a4958fdc046a0a3366097c20b3976
4 schema:citation sg:pub.10.1007/978-1-4419-6397-0
5 sg:pub.10.1007/s12555-012-0550-y
6 sg:pub.10.1007/s12555-018-0794-2
7 sg:pub.10.1186/s13662-019-2065-9
8 schema:datePublished 2021-12-07
9 schema:datePublishedReg 2021-12-07
10 schema:description This paper is concerned with the finite-time stabilization of a class of switched nonlinear singular systems under asynchronous control. Asynchronism here refers to the delays in switching between the controller and the subsystem. First, the dynamic decomposition technique is used to prove that such a switched singular system is regular and impulse-free. Secondly, based on the state solutions of the closed-loop system in the matched time period and the mismatched time period of the system instead of constructing a Lyapunov function, the sufficient conditions for the finite-time stability of the asynchronous switched singular system are given, there is no limit to the stability of subsystems. Then, the mode-dependent state feedback controller that makes the original system stable is derived in the form of strict linear matrix inequalities. Finally, numerical examples are given to verify the feasibility and validity of the results.
11 schema:genre article
12 schema:inLanguage en
13 schema:isAccessibleForFree true
14 schema:isPartOf Nad0ad59a3e4545feb7959a5ca0bd383b
15 Nd9830b97d1e648b2a44d85f2c8fd711e
16 sg:journal.1136856
17 schema:keywords Lyapunov function
18 asynchronism
19 asynchronous control
20 asynchronous switching
21 class
22 closed-loop system
23 conditions
24 control
25 controller
26 decomposition technique
27 delay
28 dynamic decomposition technique
29 example
30 feasibility
31 feedback controller
32 finite-time stability
33 finite-time stabilization
34 form
35 function
36 inequality
37 limit
38 linear matrix inequalities
39 matrix inequalities
40 mode-dependent state feedback controller
41 nonlinear singular systems
42 numerical examples
43 original system
44 paper
45 period
46 results
47 singular systems
48 solution
49 stability
50 stability of subsystems
51 stabilization
52 state feedback controller
53 state solutions
54 strict linear matrix inequalities
55 subsystems
56 sufficient conditions
57 switched singular systems
58 switching
59 system
60 technique
61 time period
62 validity
63 schema:name Finite-time stabilization of switched nonlinear singular systems with asynchronous switching
64 schema:pagination 191
65 schema:productId N7f4d98594fde44b5ba1c2985f2842e41
66 Nf7c36be6225b4b50ba19937c4a344d57
67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1143693979
68 https://doi.org/10.1186/s13660-021-02728-2
69 schema:sdDatePublished 2022-05-20T07:39
70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
71 schema:sdPublisher N17286013bfbf494db1f2b1c031714532
72 schema:url https://doi.org/10.1186/s13660-021-02728-2
73 sgo:license sg:explorer/license/
74 sgo:sdDataset articles
75 rdf:type schema:ScholarlyArticle
76 N17286013bfbf494db1f2b1c031714532 schema:name Springer Nature - SN SciGraph project
77 rdf:type schema:Organization
78 N22d4e5aaefcb4954bb123795aa4eb8a9 schema:affiliation grid-institutes:grid.19373.3f
79 schema:familyName Wang
80 schema:givenName Xingtao
81 rdf:type schema:Person
82 N3771ab11d4424f50ad2a95f814f44915 schema:affiliation grid-institutes:grid.19373.3f
83 schema:familyName Wang
84 schema:givenName Jing
85 rdf:type schema:Person
86 N66e774bdb7b541158bc1710a3288dd97 rdf:first N22d4e5aaefcb4954bb123795aa4eb8a9
87 rdf:rest rdf:nil
88 N776a4958fdc046a0a3366097c20b3976 rdf:first N3771ab11d4424f50ad2a95f814f44915
89 rdf:rest N66e774bdb7b541158bc1710a3288dd97
90 N7f4d98594fde44b5ba1c2985f2842e41 schema:name dimensions_id
91 schema:value pub.1143693979
92 rdf:type schema:PropertyValue
93 Nad0ad59a3e4545feb7959a5ca0bd383b schema:issueNumber 1
94 rdf:type schema:PublicationIssue
95 Nd9830b97d1e648b2a44d85f2c8fd711e schema:volumeNumber 2021
96 rdf:type schema:PublicationVolume
97 Nf7c36be6225b4b50ba19937c4a344d57 schema:name doi
98 schema:value 10.1186/s13660-021-02728-2
99 rdf:type schema:PropertyValue
100 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
101 schema:name Mathematical Sciences
102 rdf:type schema:DefinedTerm
103 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
104 schema:name Applied Mathematics
105 rdf:type schema:DefinedTerm
106 sg:journal.1136856 schema:issn 1025-5834
107 1029-242X
108 schema:name Journal of Inequalities and Applications
109 schema:publisher Springer Nature
110 rdf:type schema:Periodical
111 sg:pub.10.1007/978-1-4419-6397-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024238701
112 https://doi.org/10.1007/978-1-4419-6397-0
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/s12555-012-0550-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1008092743
115 https://doi.org/10.1007/s12555-012-0550-y
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/s12555-018-0794-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113945581
118 https://doi.org/10.1007/s12555-018-0794-2
119 rdf:type schema:CreativeWork
120 sg:pub.10.1186/s13662-019-2065-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112945827
121 https://doi.org/10.1186/s13662-019-2065-9
122 rdf:type schema:CreativeWork
123 grid-institutes:grid.19373.3f schema:alternateName Department of Mathematics, Harbin Institute of Technology, Xidazhi Road, 150000, Harbin, P.R. China
124 schema:name Department of Mathematics, Harbin Institute of Technology, Xidazhi Road, 150000, Harbin, P.R. China
125 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...