Bergman spaces with exponential type weights View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-12-11

AUTHORS

Hicham Arroussi

ABSTRACT

For 1≤p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1\le p<\infty $\end{document}, let Aωp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A^{p}_{\omega }$\end{document} be the weighted Bergman space associated with an exponential type weight ω satisfying ∫D|Kz(ξ)|ω(ξ)1/2dA(ξ)≤Cω(z)−1/2,z∈D,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \int _{{\mathbb{D}}} \bigl\vert K_{z}(\xi ) \bigr\vert \omega (\xi )^{1/2} \,dA(\xi ) \le C \omega (z)^{-1/2}, \quad z\in {\mathbb{D}}, $$\end{document} where Kz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$K_{z}$\end{document} is the reproducing kernel of Aω2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A^{2}_{\omega }$\end{document}. This condition allows us to obtain some interesting reproducing kernel estimates and more estimates on the solutions of the ∂̅-equation (Theorem 2.5) for more general weight ω∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\omega _{*}$\end{document}. As an application, we prove the boundedness of the Bergman projection on Lωp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{p}_{\omega }$\end{document}, identify the dual space of Aωp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A^{p}_{\omega }$\end{document}, and establish an atomic decomposition for it. Further, we give necessary and sufficient conditions for the boundedness and compactness of some operators acting from Aωp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A^{p}_{\omega }$\end{document} into Aωq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A^{q}_{\omega }$\end{document}, 1≤p,q<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1\le p,q<\infty $\end{document}, such as Toeplitz and (big) Hankel operators. More... »

PAGES

193

References to SciGraph publications

  • 1992-05. Hankel and Toeplitz operators on Dirichlet spaces in INTEGRAL EQUATIONS AND OPERATOR THEORY
  • 1998-12. Beurling-type density theorems for weightedLp spaces of entire functions in JOURNAL D'ANALYSE MATHÉMATIQUE
  • 1993-10. Boundedness, compactness, and Schattenp-classes of Hankel operators between weighted Dirichlet spaces in ARKIV FÖR MATEMATIK
  • 1993-12. Beurling type density theorems in the unit disk in INVENTIONES MATHEMATICAE
  • 2013-10-11. Hankel Operators on Fock Spaces in CONCRETE OPERATORS, SPECTRAL THEORY, OPERATORS IN HARMONIC ANALYSIS AND APPROXIMATION
  • 1995-12. Hankel operators on the weighted Bergman spaces with exponential type weights in INTEGRAL EQUATIONS AND OPERATOR THEORY
  • 1978-02. Embedding theorems for weighted classes of harmonic and analytic functions in JOURNAL OF MATHEMATICAL SCIENCES
  • 1988-12. Hankel operators between weighted Bergman spaces in ARKIV FÖR MATEMATIK
  • 2003. Hankel Operators and Their Applications in NONE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s13660-021-02726-4

    DOI

    http://dx.doi.org/10.1186/s13660-021-02726-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1143817449


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Mathematics and Statistics, Pepper Lane, Whiteknights, RG6 6AX, Reading, England, UK", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Department of Mathematics and Statistics, Pepper Lane, Whiteknights, RG6 6AX, Reading, England, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Arroussi", 
            "givenName": "Hicham", 
            "id": "sg:person.010404605131.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010404605131.52"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01578546", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041268627", 
              "https://doi.org/10.1007/bf01578546"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01200333", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037289344", 
              "https://doi.org/10.1007/bf01200333"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-0348-0648-0_24", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048124033", 
              "https://doi.org/10.1007/978-3-0348-0648-0_24"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02559493", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043636920", 
              "https://doi.org/10.1007/bf02559493"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-0-387-21681-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050011066", 
              "https://doi.org/10.1007/978-0-387-21681-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02386120", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003898351", 
              "https://doi.org/10.1007/bf02386120"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01244300", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028586842", 
              "https://doi.org/10.1007/bf01244300"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01222018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010648525", 
              "https://doi.org/10.1007/bf01222018"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02788702", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024601054", 
              "https://doi.org/10.1007/bf02788702"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-12-11", 
        "datePublishedReg": "2021-12-11", 
        "description": "For 1\u2264p<\u221e\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$1\\le p<\\infty $\\end{document}, let A\u03c9p\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$A^{p}_{\\omega }$\\end{document} be the weighted Bergman space associated with an exponential type weight \u03c9 satisfying \n\t\t\t\u222bD|Kz(\u03be)|\u03c9(\u03be)1/2dA(\u03be)\u2264C\u03c9(z)\u22121/2,z\u2208D,\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\int _{{\\mathbb{D}}} \\bigl\\vert K_{z}(\\xi ) \\bigr\\vert \\omega (\\xi )^{1/2} \\,dA(\\xi ) \\le C \\omega (z)^{-1/2}, \\quad z\\in {\\mathbb{D}}, $$\\end{document} where Kz\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$K_{z}$\\end{document} is the reproducing kernel of A\u03c92\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$A^{2}_{\\omega }$\\end{document}. This condition allows us to obtain some interesting reproducing kernel estimates and more estimates on the solutions of the \u2202\u0305-equation (Theorem 2.5) for more general weight \u03c9\u2217\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\omega _{*}$\\end{document}. As an application, we prove the boundedness of the Bergman projection on L\u03c9p\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$L^{p}_{\\omega }$\\end{document}, identify the dual space of A\u03c9p\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$A^{p}_{\\omega }$\\end{document}, and establish an atomic decomposition for it. Further, we give necessary and sufficient conditions for the boundedness and compactness of some operators acting from A\u03c9p\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$A^{p}_{\\omega }$\\end{document} into A\u03c9q\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$A^{q}_{\\omega }$\\end{document}, 1\u2264p,q<\u221e\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$1\\le p,q<\\infty $\\end{document}, such as Toeplitz and (big) Hankel operators.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s13660-021-02726-4", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136856", 
            "issn": [
              "1025-5834", 
              "1029-242X"
            ], 
            "name": "Journal of Inequalities and Applications", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2021"
          }
        ], 
        "keywords": [
          "weight", 
          "conditions", 
          "estimates", 
          "projections", 
          "general weights", 
          "more estimates", 
          "exponential type weights", 
          "space", 
          "weight \u03c9", 
          "applications", 
          "type weights", 
          "solution", 
          "Bergman projection", 
          "operators", 
          "weighted Bergman spaces", 
          "Bergman spaces", 
          "kernel", 
          "kernel estimates", 
          "boundedness", 
          "dual space", 
          "atomic decomposition", 
          "sufficient conditions", 
          "Hankel operators", 
          "equations", 
          "compactness", 
          "Toeplitz", 
          "decomposition"
        ], 
        "name": "Bergman spaces with exponential type weights", 
        "pagination": "193", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1143817449"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s13660-021-02726-4"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s13660-021-02726-4", 
          "https://app.dimensions.ai/details/publication/pub.1143817449"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:38", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_882.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s13660-021-02726-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13660-021-02726-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13660-021-02726-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13660-021-02726-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13660-021-02726-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    125 TRIPLES      22 PREDICATES      62 URIs      44 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s13660-021-02726-4 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 anzsrc-for:0102
    4 schema:author Nc299d4d10b75462199f574485bd95d12
    5 schema:citation sg:pub.10.1007/978-0-387-21681-2
    6 sg:pub.10.1007/978-3-0348-0648-0_24
    7 sg:pub.10.1007/bf01200333
    8 sg:pub.10.1007/bf01222018
    9 sg:pub.10.1007/bf01244300
    10 sg:pub.10.1007/bf01578546
    11 sg:pub.10.1007/bf02386120
    12 sg:pub.10.1007/bf02559493
    13 sg:pub.10.1007/bf02788702
    14 schema:datePublished 2021-12-11
    15 schema:datePublishedReg 2021-12-11
    16 schema:description For 1≤p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1\le p<\infty $\end{document}, let Aωp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A^{p}_{\omega }$\end{document} be the weighted Bergman space associated with an exponential type weight ω satisfying ∫D|Kz(ξ)|ω(ξ)1/2dA(ξ)≤Cω(z)−1/2,z∈D,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \int _{{\mathbb{D}}} \bigl\vert K_{z}(\xi ) \bigr\vert \omega (\xi )^{1/2} \,dA(\xi ) \le C \omega (z)^{-1/2}, \quad z\in {\mathbb{D}}, $$\end{document} where Kz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$K_{z}$\end{document} is the reproducing kernel of Aω2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A^{2}_{\omega }$\end{document}. This condition allows us to obtain some interesting reproducing kernel estimates and more estimates on the solutions of the ∂̅-equation (Theorem 2.5) for more general weight ω∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\omega _{*}$\end{document}. As an application, we prove the boundedness of the Bergman projection on Lωp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{p}_{\omega }$\end{document}, identify the dual space of Aωp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A^{p}_{\omega }$\end{document}, and establish an atomic decomposition for it. Further, we give necessary and sufficient conditions for the boundedness and compactness of some operators acting from Aωp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A^{p}_{\omega }$\end{document} into Aωq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A^{q}_{\omega }$\end{document}, 1≤p,q<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1\le p,q<\infty $\end{document}, such as Toeplitz and (big) Hankel operators.
    17 schema:genre article
    18 schema:inLanguage en
    19 schema:isAccessibleForFree true
    20 schema:isPartOf N30d83894f6e345d4b5edfbb5cadeb3ef
    21 Na2556ae7558c43bcb009e565bb7e6e87
    22 sg:journal.1136856
    23 schema:keywords Bergman projection
    24 Bergman spaces
    25 Hankel operators
    26 Toeplitz
    27 applications
    28 atomic decomposition
    29 boundedness
    30 compactness
    31 conditions
    32 decomposition
    33 dual space
    34 equations
    35 estimates
    36 exponential type weights
    37 general weights
    38 kernel
    39 kernel estimates
    40 more estimates
    41 operators
    42 projections
    43 solution
    44 space
    45 sufficient conditions
    46 type weights
    47 weight
    48 weight ω
    49 weighted Bergman spaces
    50 schema:name Bergman spaces with exponential type weights
    51 schema:pagination 193
    52 schema:productId N113de29d1f5c44a98102439997028918
    53 N32b6cd818e0b4ff98e28bd439637d08f
    54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1143817449
    55 https://doi.org/10.1186/s13660-021-02726-4
    56 schema:sdDatePublished 2022-05-20T07:38
    57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    58 schema:sdPublisher N434fe2696170453b99def965c85064af
    59 schema:url https://doi.org/10.1186/s13660-021-02726-4
    60 sgo:license sg:explorer/license/
    61 sgo:sdDataset articles
    62 rdf:type schema:ScholarlyArticle
    63 N113de29d1f5c44a98102439997028918 schema:name dimensions_id
    64 schema:value pub.1143817449
    65 rdf:type schema:PropertyValue
    66 N30d83894f6e345d4b5edfbb5cadeb3ef schema:volumeNumber 2021
    67 rdf:type schema:PublicationVolume
    68 N32b6cd818e0b4ff98e28bd439637d08f schema:name doi
    69 schema:value 10.1186/s13660-021-02726-4
    70 rdf:type schema:PropertyValue
    71 N434fe2696170453b99def965c85064af schema:name Springer Nature - SN SciGraph project
    72 rdf:type schema:Organization
    73 Na2556ae7558c43bcb009e565bb7e6e87 schema:issueNumber 1
    74 rdf:type schema:PublicationIssue
    75 Nc299d4d10b75462199f574485bd95d12 rdf:first sg:person.010404605131.52
    76 rdf:rest rdf:nil
    77 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    78 schema:name Mathematical Sciences
    79 rdf:type schema:DefinedTerm
    80 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    81 schema:name Pure Mathematics
    82 rdf:type schema:DefinedTerm
    83 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
    84 schema:name Applied Mathematics
    85 rdf:type schema:DefinedTerm
    86 sg:journal.1136856 schema:issn 1025-5834
    87 1029-242X
    88 schema:name Journal of Inequalities and Applications
    89 schema:publisher Springer Nature
    90 rdf:type schema:Periodical
    91 sg:person.010404605131.52 schema:affiliation grid-institutes:None
    92 schema:familyName Arroussi
    93 schema:givenName Hicham
    94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010404605131.52
    95 rdf:type schema:Person
    96 sg:pub.10.1007/978-0-387-21681-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050011066
    97 https://doi.org/10.1007/978-0-387-21681-2
    98 rdf:type schema:CreativeWork
    99 sg:pub.10.1007/978-3-0348-0648-0_24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048124033
    100 https://doi.org/10.1007/978-3-0348-0648-0_24
    101 rdf:type schema:CreativeWork
    102 sg:pub.10.1007/bf01200333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037289344
    103 https://doi.org/10.1007/bf01200333
    104 rdf:type schema:CreativeWork
    105 sg:pub.10.1007/bf01222018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010648525
    106 https://doi.org/10.1007/bf01222018
    107 rdf:type schema:CreativeWork
    108 sg:pub.10.1007/bf01244300 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028586842
    109 https://doi.org/10.1007/bf01244300
    110 rdf:type schema:CreativeWork
    111 sg:pub.10.1007/bf01578546 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041268627
    112 https://doi.org/10.1007/bf01578546
    113 rdf:type schema:CreativeWork
    114 sg:pub.10.1007/bf02386120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003898351
    115 https://doi.org/10.1007/bf02386120
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1007/bf02559493 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043636920
    118 https://doi.org/10.1007/bf02559493
    119 rdf:type schema:CreativeWork
    120 sg:pub.10.1007/bf02788702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024601054
    121 https://doi.org/10.1007/bf02788702
    122 rdf:type schema:CreativeWork
    123 grid-institutes:None schema:alternateName Department of Mathematics and Statistics, Pepper Lane, Whiteknights, RG6 6AX, Reading, England, UK
    124 schema:name Department of Mathematics and Statistics, Pepper Lane, Whiteknights, RG6 6AX, Reading, England, UK
    125 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...