Post-quantum Hermite–Hadamard type inequalities for interval-valued convex functions View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-04-29

AUTHORS

Muhammad Aamir Ali, Hüseyin Budak, Ghulam Murtaza, Yu-Ming Chu

ABSTRACT

In this research, we introduce the notions of (p,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(p,q)$\end{document}-derivative and integral for interval-valued functions and discuss their fundamental properties. After that, we prove some new inequalities of Hermite–Hadamard type for interval-valued convex functions employing the newly defined integral and derivative. Moreover, we find the estimates for the newly proved inequalities of Hermite–Hadamard type. It is also shown that the results proved in this study are the generalization of some already proved research in the field of Hermite–Hadamard inequalities. More... »

PAGES

84

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13660-021-02619-6

DOI

http://dx.doi.org/10.1186/s13660-021-02619-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1137608927


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Jiangsu Key Laboratory for NSLSCS, School of Mathematical Sciences, Nanjing Normal University, 210023, Nanjing, China", 
          "id": "http://www.grid.ac/institutes/grid.260474.3", 
          "name": [
            "Jiangsu Key Laboratory for NSLSCS, School of Mathematical Sciences, Nanjing Normal University, 210023, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ali", 
        "givenName": "Muhammad Aamir", 
        "id": "sg:person.015237425415.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015237425415.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Faculty of Science and Arts, D\u00fczce University, D\u00fczce, Turkey", 
          "id": "http://www.grid.ac/institutes/grid.412121.5", 
          "name": [
            "Department of Mathematics, Faculty of Science and Arts, D\u00fczce University, D\u00fczce, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Budak", 
        "givenName": "H\u00fcseyin", 
        "id": "sg:person.07356663407.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07356663407.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics (SSC), University of Management and Technology, C-II, Johar Town, Lahore, Pakistan", 
          "id": "http://www.grid.ac/institutes/grid.444940.9", 
          "name": [
            "Department of Mathematics (SSC), University of Management and Technology, C-II, Johar Town, Lahore, Pakistan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Murtaza", 
        "givenName": "Ghulam", 
        "id": "sg:person.013723574473.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013723574473.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Huzhou University, 313000, Huzhou, China", 
          "id": "http://www.grid.ac/institutes/grid.411440.4", 
          "name": [
            "Department of Mathematics, Huzhou University, 313000, Huzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chu", 
        "givenName": "Yu-Ming", 
        "id": "sg:person.015403022055.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015403022055.21"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1687-1847-2013-282", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018297143", 
          "https://doi.org/10.1186/1687-1847-2013-282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13662-020-03162-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1134298121", 
          "https://doi.org/10.1186/s13662-020-03162-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00025-018-0783-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101085154", 
          "https://doi.org/10.1007/s00025-018-0783-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13662-020-03163-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1134383179", 
          "https://doi.org/10.1186/s13662-020-03163-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10957-020-01726-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1129741982", 
          "https://doi.org/10.1007/s10957-020-01726-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-0431-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052429791", 
          "https://doi.org/10.1007/978-3-0348-0431-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13662-019-2438-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1123822666", 
          "https://doi.org/10.1186/s13662-019-2438-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10474-020-01025-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1124870381", 
          "https://doi.org/10.1007/s10474-020-01025-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02265313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036273596", 
          "https://doi.org/10.1007/bf02265313"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-04-29", 
    "datePublishedReg": "2021-04-29", 
    "description": "In this research, we introduce the notions of (p,q)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$(p,q)$\\end{document}-derivative and integral for interval-valued functions and discuss their fundamental properties. After that, we prove some new inequalities of Hermite\u2013Hadamard type for interval-valued convex functions employing the newly defined integral and derivative. Moreover, we find the estimates for the newly proved inequalities of Hermite\u2013Hadamard type. It is also shown that the results proved in this study are the generalization of some already proved research in the field of Hermite\u2013Hadamard inequalities.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s13660-021-02619-6", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7185446", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8127266", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8898402", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8306815", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8125909", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8129770", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1136856", 
        "issn": [
          "1025-5834", 
          "1029-242X"
        ], 
        "name": "Journal of Inequalities and Applications", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2021"
      }
    ], 
    "keywords": [
      "Hermite\u2013Hadamard type", 
      "convex functions", 
      "interval-valued convex functions", 
      "interval-valued functions", 
      "Hermite-Hadamard type inequalities", 
      "Hermite\u2013Hadamard inequality", 
      "type inequalities", 
      "new inequalities", 
      "fundamental properties", 
      "inequality", 
      "integrals", 
      "generalization", 
      "function", 
      "field", 
      "estimates", 
      "properties", 
      "notion", 
      "derivatives", 
      "types", 
      "results", 
      "research", 
      "study"
    ], 
    "name": "Post-quantum Hermite\u2013Hadamard type inequalities for interval-valued convex functions", 
    "pagination": "84", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1137608927"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13660-021-02619-6"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13660-021-02619-6", 
      "https://app.dimensions.ai/details/publication/pub.1137608927"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T21:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_885.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s13660-021-02619-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13660-021-02619-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13660-021-02619-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13660-021-02619-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13660-021-02619-6'


 

This table displays all metadata directly associated to this object as RDF triples.

161 TRIPLES      21 PREDICATES      56 URIs      38 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13660-021-02619-6 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 anzsrc-for:0102
4 schema:author Nb8c9b4050aef4c6cab34fab4a452ba19
5 schema:citation sg:pub.10.1007/978-3-0348-0431-8
6 sg:pub.10.1007/bf02265313
7 sg:pub.10.1007/s00025-018-0783-z
8 sg:pub.10.1007/s10474-020-01025-6
9 sg:pub.10.1007/s10957-020-01726-6
10 sg:pub.10.1186/1687-1847-2013-282
11 sg:pub.10.1186/s13662-019-2438-0
12 sg:pub.10.1186/s13662-020-03162-2
13 sg:pub.10.1186/s13662-020-03163-1
14 schema:datePublished 2021-04-29
15 schema:datePublishedReg 2021-04-29
16 schema:description In this research, we introduce the notions of (p,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(p,q)$\end{document}-derivative and integral for interval-valued functions and discuss their fundamental properties. After that, we prove some new inequalities of Hermite–Hadamard type for interval-valued convex functions employing the newly defined integral and derivative. Moreover, we find the estimates for the newly proved inequalities of Hermite–Hadamard type. It is also shown that the results proved in this study are the generalization of some already proved research in the field of Hermite–Hadamard inequalities.
17 schema:genre article
18 schema:isAccessibleForFree true
19 schema:isPartOf N8feee1cbb81f4cccb3463653076f62a5
20 N99436e842eec440c8cbb4219775259c1
21 sg:journal.1136856
22 schema:keywords Hermite-Hadamard type inequalities
23 Hermite–Hadamard inequality
24 Hermite–Hadamard type
25 convex functions
26 derivatives
27 estimates
28 field
29 function
30 fundamental properties
31 generalization
32 inequality
33 integrals
34 interval-valued convex functions
35 interval-valued functions
36 new inequalities
37 notion
38 properties
39 research
40 results
41 study
42 type inequalities
43 types
44 schema:name Post-quantum Hermite–Hadamard type inequalities for interval-valued convex functions
45 schema:pagination 84
46 schema:productId Nbdd1c06b0a1b4c40b375aab339d9ac6c
47 Nf7adb9352ed04dc28ec652ee88b5312c
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1137608927
49 https://doi.org/10.1186/s13660-021-02619-6
50 schema:sdDatePublished 2022-11-24T21:07
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher Nd87617ab070649009b16a43aa4be657c
53 schema:url https://doi.org/10.1186/s13660-021-02619-6
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N2d5a6da775434cd6ad030adb87b9f55a rdf:first sg:person.015403022055.21
58 rdf:rest rdf:nil
59 N6a470ee57d6349ca86eeec8139c3d7af rdf:first sg:person.013723574473.28
60 rdf:rest N2d5a6da775434cd6ad030adb87b9f55a
61 N7bea617785ff4b1895d5be4ccb1824a2 rdf:first sg:person.07356663407.38
62 rdf:rest N6a470ee57d6349ca86eeec8139c3d7af
63 N8feee1cbb81f4cccb3463653076f62a5 schema:volumeNumber 2021
64 rdf:type schema:PublicationVolume
65 N99436e842eec440c8cbb4219775259c1 schema:issueNumber 1
66 rdf:type schema:PublicationIssue
67 Nb8c9b4050aef4c6cab34fab4a452ba19 rdf:first sg:person.015237425415.50
68 rdf:rest N7bea617785ff4b1895d5be4ccb1824a2
69 Nbdd1c06b0a1b4c40b375aab339d9ac6c schema:name doi
70 schema:value 10.1186/s13660-021-02619-6
71 rdf:type schema:PropertyValue
72 Nd87617ab070649009b16a43aa4be657c schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 Nf7adb9352ed04dc28ec652ee88b5312c schema:name dimensions_id
75 schema:value pub.1137608927
76 rdf:type schema:PropertyValue
77 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
78 schema:name Mathematical Sciences
79 rdf:type schema:DefinedTerm
80 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
81 schema:name Pure Mathematics
82 rdf:type schema:DefinedTerm
83 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
84 schema:name Applied Mathematics
85 rdf:type schema:DefinedTerm
86 sg:grant.7185446 http://pending.schema.org/fundedItem sg:pub.10.1186/s13660-021-02619-6
87 rdf:type schema:MonetaryGrant
88 sg:grant.8125909 http://pending.schema.org/fundedItem sg:pub.10.1186/s13660-021-02619-6
89 rdf:type schema:MonetaryGrant
90 sg:grant.8127266 http://pending.schema.org/fundedItem sg:pub.10.1186/s13660-021-02619-6
91 rdf:type schema:MonetaryGrant
92 sg:grant.8129770 http://pending.schema.org/fundedItem sg:pub.10.1186/s13660-021-02619-6
93 rdf:type schema:MonetaryGrant
94 sg:grant.8306815 http://pending.schema.org/fundedItem sg:pub.10.1186/s13660-021-02619-6
95 rdf:type schema:MonetaryGrant
96 sg:grant.8898402 http://pending.schema.org/fundedItem sg:pub.10.1186/s13660-021-02619-6
97 rdf:type schema:MonetaryGrant
98 sg:journal.1136856 schema:issn 1025-5834
99 1029-242X
100 schema:name Journal of Inequalities and Applications
101 schema:publisher Springer Nature
102 rdf:type schema:Periodical
103 sg:person.013723574473.28 schema:affiliation grid-institutes:grid.444940.9
104 schema:familyName Murtaza
105 schema:givenName Ghulam
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013723574473.28
107 rdf:type schema:Person
108 sg:person.015237425415.50 schema:affiliation grid-institutes:grid.260474.3
109 schema:familyName Ali
110 schema:givenName Muhammad Aamir
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015237425415.50
112 rdf:type schema:Person
113 sg:person.015403022055.21 schema:affiliation grid-institutes:grid.411440.4
114 schema:familyName Chu
115 schema:givenName Yu-Ming
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015403022055.21
117 rdf:type schema:Person
118 sg:person.07356663407.38 schema:affiliation grid-institutes:grid.412121.5
119 schema:familyName Budak
120 schema:givenName Hüseyin
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07356663407.38
122 rdf:type schema:Person
123 sg:pub.10.1007/978-3-0348-0431-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052429791
124 https://doi.org/10.1007/978-3-0348-0431-8
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/bf02265313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036273596
127 https://doi.org/10.1007/bf02265313
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/s00025-018-0783-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1101085154
130 https://doi.org/10.1007/s00025-018-0783-z
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/s10474-020-01025-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124870381
133 https://doi.org/10.1007/s10474-020-01025-6
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/s10957-020-01726-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1129741982
136 https://doi.org/10.1007/s10957-020-01726-6
137 rdf:type schema:CreativeWork
138 sg:pub.10.1186/1687-1847-2013-282 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018297143
139 https://doi.org/10.1186/1687-1847-2013-282
140 rdf:type schema:CreativeWork
141 sg:pub.10.1186/s13662-019-2438-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1123822666
142 https://doi.org/10.1186/s13662-019-2438-0
143 rdf:type schema:CreativeWork
144 sg:pub.10.1186/s13662-020-03162-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1134298121
145 https://doi.org/10.1186/s13662-020-03162-2
146 rdf:type schema:CreativeWork
147 sg:pub.10.1186/s13662-020-03163-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1134383179
148 https://doi.org/10.1186/s13662-020-03163-1
149 rdf:type schema:CreativeWork
150 grid-institutes:grid.260474.3 schema:alternateName Jiangsu Key Laboratory for NSLSCS, School of Mathematical Sciences, Nanjing Normal University, 210023, Nanjing, China
151 schema:name Jiangsu Key Laboratory for NSLSCS, School of Mathematical Sciences, Nanjing Normal University, 210023, Nanjing, China
152 rdf:type schema:Organization
153 grid-institutes:grid.411440.4 schema:alternateName Department of Mathematics, Huzhou University, 313000, Huzhou, China
154 schema:name Department of Mathematics, Huzhou University, 313000, Huzhou, China
155 rdf:type schema:Organization
156 grid-institutes:grid.412121.5 schema:alternateName Department of Mathematics, Faculty of Science and Arts, Düzce University, Düzce, Turkey
157 schema:name Department of Mathematics, Faculty of Science and Arts, Düzce University, Düzce, Turkey
158 rdf:type schema:Organization
159 grid-institutes:grid.444940.9 schema:alternateName Department of Mathematics (SSC), University of Management and Technology, C-II, Johar Town, Lahore, Pakistan
160 schema:name Department of Mathematics (SSC), University of Management and Technology, C-II, Johar Town, Lahore, Pakistan
161 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...