Fractional Hermite–Hadamard type inequalities for interval-valued functions View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-10-17

AUTHORS

Xuelong Liu, Gouju Ye, Dafang Zhao, Wei Liu

ABSTRACT

We introduce the concept of interval harmonically convex functions. By using two different classes of convexity, we get some further refinements for interval fractional Hermite–Hadamard type inequalities. Also, some examples are presented.

PAGES

266

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13660-019-2217-1

DOI

http://dx.doi.org/10.1186/s13660-019-2217-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1121887653


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "College of Science, Hohai University, Nanjing, P.R. China", 
          "id": "http://www.grid.ac/institutes/grid.257065.3", 
          "name": [
            "College of Science, Hohai University, Nanjing, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Xuelong", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "College of Science, Hohai University, Nanjing, P.R. China", 
          "id": "http://www.grid.ac/institutes/grid.257065.3", 
          "name": [
            "College of Science, Hohai University, Nanjing, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ye", 
        "givenName": "Gouju", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Mathematics and Statistics, Hubei Normal University, Huangshi, P.R. China", 
          "id": "http://www.grid.ac/institutes/grid.462271.4", 
          "name": [
            "College of Science, Hohai University, Nanjing, P.R. China", 
            "School of Mathematics and Statistics, Hubei Normal University, Huangshi, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Dafang", 
        "id": "sg:person.012305220221.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012305220221.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "College of Science, Hohai University, Nanjing, P.R. China", 
          "id": "http://www.grid.ac/institutes/grid.257065.3", 
          "name": [
            "College of Science, Hohai University, Nanjing, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Wei", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00500-014-1483-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038733505", 
          "https://doi.org/10.1007/s00500-014-1483-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13660-018-1896-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109766109", 
          "https://doi.org/10.1186/s13660-018-1896-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00500-018-3538-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107273144", 
          "https://doi.org/10.1007/s00500-018-3538-6"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-10-17", 
    "datePublishedReg": "2019-10-17", 
    "description": "We introduce the concept of interval harmonically convex functions. By using two different classes of convexity, we get some further refinements for interval fractional Hermite\u2013Hadamard type inequalities. Also, some examples are presented.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s13660-019-2217-1", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136856", 
        "issn": [
          "1025-5834", 
          "1029-242X"
        ], 
        "name": "Journal of Inequalities and Applications", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2019"
      }
    ], 
    "keywords": [
      "further refinement", 
      "interval", 
      "function", 
      "Hermite-Hadamard type inequalities", 
      "different classes", 
      "class", 
      "convexity", 
      "refinement", 
      "inequality", 
      "type inequalities", 
      "concept", 
      "example", 
      "convex functions", 
      "interval-valued functions", 
      "concept of interval"
    ], 
    "name": "Fractional Hermite\u2013Hadamard type inequalities for interval-valued functions", 
    "pagination": "266", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1121887653"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13660-019-2217-1"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13660-019-2217-1", 
      "https://app.dimensions.ai/details/publication/pub.1121887653"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_826.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s13660-019-2217-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13660-019-2217-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13660-019-2217-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13660-019-2217-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13660-019-2217-1'


 

This table displays all metadata directly associated to this object as RDF triples.

110 TRIPLES      21 PREDICATES      43 URIs      31 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13660-019-2217-1 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 anzsrc-for:0102
4 schema:author N2b6c6072ca444baebb6bb7e9083040af
5 schema:citation sg:pub.10.1007/s00500-014-1483-6
6 sg:pub.10.1007/s00500-018-3538-6
7 sg:pub.10.1186/s13660-018-1896-3
8 schema:datePublished 2019-10-17
9 schema:datePublishedReg 2019-10-17
10 schema:description We introduce the concept of interval harmonically convex functions. By using two different classes of convexity, we get some further refinements for interval fractional Hermite–Hadamard type inequalities. Also, some examples are presented.
11 schema:genre article
12 schema:isAccessibleForFree true
13 schema:isPartOf N13ec90f337884eba8c971ce392d2536f
14 Nd2a5bccae5204f7388780185feb0f202
15 sg:journal.1136856
16 schema:keywords Hermite-Hadamard type inequalities
17 class
18 concept
19 concept of interval
20 convex functions
21 convexity
22 different classes
23 example
24 function
25 further refinement
26 inequality
27 interval
28 interval-valued functions
29 refinement
30 type inequalities
31 schema:name Fractional Hermite–Hadamard type inequalities for interval-valued functions
32 schema:pagination 266
33 schema:productId N2efa51deca9248f3966974754f525eef
34 N6c0ba9c3d2c8483b9d9de2d7e20ab849
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1121887653
36 https://doi.org/10.1186/s13660-019-2217-1
37 schema:sdDatePublished 2022-12-01T06:39
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher N9f6faa406c384cc19f8dbf03b0408c2e
40 schema:url https://doi.org/10.1186/s13660-019-2217-1
41 sgo:license sg:explorer/license/
42 sgo:sdDataset articles
43 rdf:type schema:ScholarlyArticle
44 N13b5624e116f4ad0967a673844409046 rdf:first Nbf4f55c9eb3344da83885f6ca0b0d243
45 rdf:rest rdf:nil
46 N13ec90f337884eba8c971ce392d2536f schema:volumeNumber 2019
47 rdf:type schema:PublicationVolume
48 N2b6c6072ca444baebb6bb7e9083040af rdf:first Nd074728208d4409ebcec51a0fe0bf4d3
49 rdf:rest N37762607a8dd4c329a9db88f2f77b47a
50 N2efa51deca9248f3966974754f525eef schema:name doi
51 schema:value 10.1186/s13660-019-2217-1
52 rdf:type schema:PropertyValue
53 N37762607a8dd4c329a9db88f2f77b47a rdf:first N79e409da207f41cfb2ddbf4f1a7f94d8
54 rdf:rest N97421567cc8a4dc297e81ed1cfa9cd8d
55 N6c0ba9c3d2c8483b9d9de2d7e20ab849 schema:name dimensions_id
56 schema:value pub.1121887653
57 rdf:type schema:PropertyValue
58 N79e409da207f41cfb2ddbf4f1a7f94d8 schema:affiliation grid-institutes:grid.257065.3
59 schema:familyName Ye
60 schema:givenName Gouju
61 rdf:type schema:Person
62 N97421567cc8a4dc297e81ed1cfa9cd8d rdf:first sg:person.012305220221.44
63 rdf:rest N13b5624e116f4ad0967a673844409046
64 N9f6faa406c384cc19f8dbf03b0408c2e schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 Nbf4f55c9eb3344da83885f6ca0b0d243 schema:affiliation grid-institutes:grid.257065.3
67 schema:familyName Liu
68 schema:givenName Wei
69 rdf:type schema:Person
70 Nd074728208d4409ebcec51a0fe0bf4d3 schema:affiliation grid-institutes:grid.257065.3
71 schema:familyName Liu
72 schema:givenName Xuelong
73 rdf:type schema:Person
74 Nd2a5bccae5204f7388780185feb0f202 schema:issueNumber 1
75 rdf:type schema:PublicationIssue
76 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
77 schema:name Mathematical Sciences
78 rdf:type schema:DefinedTerm
79 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
80 schema:name Pure Mathematics
81 rdf:type schema:DefinedTerm
82 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
83 schema:name Applied Mathematics
84 rdf:type schema:DefinedTerm
85 sg:journal.1136856 schema:issn 1025-5834
86 1029-242X
87 schema:name Journal of Inequalities and Applications
88 schema:publisher Springer Nature
89 rdf:type schema:Periodical
90 sg:person.012305220221.44 schema:affiliation grid-institutes:grid.462271.4
91 schema:familyName Zhao
92 schema:givenName Dafang
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012305220221.44
94 rdf:type schema:Person
95 sg:pub.10.1007/s00500-014-1483-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038733505
96 https://doi.org/10.1007/s00500-014-1483-6
97 rdf:type schema:CreativeWork
98 sg:pub.10.1007/s00500-018-3538-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107273144
99 https://doi.org/10.1007/s00500-018-3538-6
100 rdf:type schema:CreativeWork
101 sg:pub.10.1186/s13660-018-1896-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109766109
102 https://doi.org/10.1186/s13660-018-1896-3
103 rdf:type schema:CreativeWork
104 grid-institutes:grid.257065.3 schema:alternateName College of Science, Hohai University, Nanjing, P.R. China
105 schema:name College of Science, Hohai University, Nanjing, P.R. China
106 rdf:type schema:Organization
107 grid-institutes:grid.462271.4 schema:alternateName School of Mathematics and Statistics, Hubei Normal University, Huangshi, P.R. China
108 schema:name College of Science, Hohai University, Nanjing, P.R. China
109 School of Mathematics and Statistics, Hubei Normal University, Huangshi, P.R. China
110 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...