Stochastic ordering of Pólya random variables and monotonicity of the Bernstein–Stancu operator for a negative parameter View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-02-26

AUTHORS

Florenţa Tripşa, Nicolae R. Pascu

ABSTRACT

In the present paper, we prove that the probabilities of the Pólya urn distribution (with negative replacement) satisfy a monotonicity property similar to that of the binomial distribution. As a consequence, we show that the corresponding random variables are stochastically ordered with respect to the parameter giving the initial distribution of the urn. An equivalent formulation of this result shows that the new Bernstein–Stancu-type operator introduced in (Pascu et al. in Proc. Rom. Acad., Ser. A: Math. Phys. Tech. Sci. Inf. Sci. 2019, in press) is a monotone operator.The proofs are probabilistic in spirit and rely on various inequalities, some of which are of independent interest (e.g., a refined version of the reversed Cauchy–Bunyakovsky–Schwarz inequality or estimates of the error of approximating an integral by the trapezoidal rule). More... »

PAGES

47

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13660-019-2004-z

DOI

http://dx.doi.org/10.1186/s13660-019-2004-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112387890


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Faculty of Mathematics and Computer Science, Transilvania University of Bra\u015fov, Bra\u015fov, Romania", 
          "id": "http://www.grid.ac/institutes/grid.5120.6", 
          "name": [
            "Faculty of Mathematics and Computer Science, Transilvania University of Bra\u015fov, Bra\u015fov, Romania"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Trip\u015fa", 
        "givenName": "Floren\u0163a", 
        "id": "sg:person.014365554477.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014365554477.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Kennesaw State University, Marietta, USA", 
          "id": "http://www.grid.ac/institutes/grid.258509.3", 
          "name": [
            "Department of Mathematics, Kennesaw State University, Marietta, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pascu", 
        "givenName": "Nicolae R.", 
        "id": "sg:person.014532727523.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014532727523.61"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-319-55402-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084845591", 
          "https://doi.org/10.1007/978-3-319-55402-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00025-019-0968-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111753332", 
          "https://doi.org/10.1007/s00025-019-0968-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-34675-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037878151", 
          "https://doi.org/10.1007/978-0-387-34675-5"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02-26", 
    "datePublishedReg": "2019-02-26", 
    "description": "In the present paper, we prove that the probabilities of the P\u00f3lya urn distribution (with negative replacement) satisfy a monotonicity property similar to that of the binomial distribution. As a consequence, we show that the corresponding random variables are stochastically ordered with respect to the parameter giving the initial distribution of the urn. An equivalent formulation of this result shows that the new Bernstein\u2013Stancu-type operator introduced in (Pascu et al. in Proc. Rom. Acad., Ser. A: Math. Phys. Tech. Sci. Inf. Sci. 2019, in press) is a monotone operator.The proofs are probabilistic in spirit and rely on various inequalities, some of which are of independent interest (e.g., a refined version of the reversed Cauchy\u2013Bunyakovsky\u2013Schwarz inequality or estimates of the error of approximating an integral by the trapezoidal rule).", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s13660-019-2004-z", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136856", 
        "issn": [
          "1025-5834", 
          "1029-242X"
        ], 
        "name": "Journal of Inequalities and Applications", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2019"
      }
    ], 
    "keywords": [
      "random variables", 
      "corresponding random variables", 
      "monotone operators", 
      "stochastic ordering", 
      "Bernstein\u2013Stancu operators", 
      "equivalent formulation", 
      "type operators", 
      "monotonicity properties", 
      "Bernstein-Stancu", 
      "independent interest", 
      "initial distribution", 
      "binomial distribution", 
      "operators", 
      "negative parameters", 
      "present paper", 
      "monotonicity", 
      "parameters", 
      "distribution", 
      "ordering", 
      "inequality", 
      "variables", 
      "formulation", 
      "probability", 
      "urn", 
      "proof", 
      "properties", 
      "respect", 
      "results", 
      "interest", 
      "spirit", 
      "consequences", 
      "paper", 
      "P\u00f3lya urn distribution", 
      "urn distribution", 
      "new Bernstein\u2013Stancu", 
      "P\u00f3lya random variables"
    ], 
    "name": "Stochastic ordering of P\u00f3lya random variables and monotonicity of the Bernstein\u2013Stancu operator for a negative parameter", 
    "pagination": "47", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112387890"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13660-019-2004-z"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13660-019-2004-z", 
      "https://app.dimensions.ai/details/publication/pub.1112387890"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_827.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s13660-019-2004-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13660-019-2004-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13660-019-2004-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13660-019-2004-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13660-019-2004-z'


 

This table displays all metadata directly associated to this object as RDF triples.

116 TRIPLES      22 PREDICATES      64 URIs      53 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13660-019-2004-z schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N5b55e085f692414dabb88c168d0fe713
4 schema:citation sg:pub.10.1007/978-0-387-34675-5
5 sg:pub.10.1007/978-3-319-55402-0
6 sg:pub.10.1007/s00025-019-0968-0
7 schema:datePublished 2019-02-26
8 schema:datePublishedReg 2019-02-26
9 schema:description In the present paper, we prove that the probabilities of the Pólya urn distribution (with negative replacement) satisfy a monotonicity property similar to that of the binomial distribution. As a consequence, we show that the corresponding random variables are stochastically ordered with respect to the parameter giving the initial distribution of the urn. An equivalent formulation of this result shows that the new Bernstein–Stancu-type operator introduced in (Pascu et al. in Proc. Rom. Acad., Ser. A: Math. Phys. Tech. Sci. Inf. Sci. 2019, in press) is a monotone operator.The proofs are probabilistic in spirit and rely on various inequalities, some of which are of independent interest (e.g., a refined version of the reversed Cauchy–Bunyakovsky–Schwarz inequality or estimates of the error of approximating an integral by the trapezoidal rule).
10 schema:genre article
11 schema:inLanguage en
12 schema:isAccessibleForFree true
13 schema:isPartOf N0a455afa91dc47e6899d41800dee25ff
14 N508a8c1e6c5344a682844f88c903b93b
15 sg:journal.1136856
16 schema:keywords Bernstein-Stancu
17 Bernstein–Stancu operators
18 Pólya random variables
19 Pólya urn distribution
20 binomial distribution
21 consequences
22 corresponding random variables
23 distribution
24 equivalent formulation
25 formulation
26 independent interest
27 inequality
28 initial distribution
29 interest
30 monotone operators
31 monotonicity
32 monotonicity properties
33 negative parameters
34 new Bernstein–Stancu
35 operators
36 ordering
37 paper
38 parameters
39 present paper
40 probability
41 proof
42 properties
43 random variables
44 respect
45 results
46 spirit
47 stochastic ordering
48 type operators
49 urn
50 urn distribution
51 variables
52 schema:name Stochastic ordering of Pólya random variables and monotonicity of the Bernstein–Stancu operator for a negative parameter
53 schema:pagination 47
54 schema:productId N16556fcd30314d7d89ed0c63f31d8665
55 Nfc27f15794a645118d8040cde611761e
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112387890
57 https://doi.org/10.1186/s13660-019-2004-z
58 schema:sdDatePublished 2021-12-01T19:46
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher N4e617ce2a5fa47fc92002a44cc685c05
61 schema:url https://doi.org/10.1186/s13660-019-2004-z
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N002e0651c94849f5ad2970a872460b37 rdf:first sg:person.014532727523.61
66 rdf:rest rdf:nil
67 N0a455afa91dc47e6899d41800dee25ff schema:issueNumber 1
68 rdf:type schema:PublicationIssue
69 N16556fcd30314d7d89ed0c63f31d8665 schema:name dimensions_id
70 schema:value pub.1112387890
71 rdf:type schema:PropertyValue
72 N4e617ce2a5fa47fc92002a44cc685c05 schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 N508a8c1e6c5344a682844f88c903b93b schema:volumeNumber 2019
75 rdf:type schema:PublicationVolume
76 N5b55e085f692414dabb88c168d0fe713 rdf:first sg:person.014365554477.42
77 rdf:rest N002e0651c94849f5ad2970a872460b37
78 Nfc27f15794a645118d8040cde611761e schema:name doi
79 schema:value 10.1186/s13660-019-2004-z
80 rdf:type schema:PropertyValue
81 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
82 schema:name Mathematical Sciences
83 rdf:type schema:DefinedTerm
84 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
85 schema:name Pure Mathematics
86 rdf:type schema:DefinedTerm
87 sg:journal.1136856 schema:issn 1025-5834
88 1029-242X
89 schema:name Journal of Inequalities and Applications
90 schema:publisher Springer Nature
91 rdf:type schema:Periodical
92 sg:person.014365554477.42 schema:affiliation grid-institutes:grid.5120.6
93 schema:familyName Tripşa
94 schema:givenName Florenţa
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014365554477.42
96 rdf:type schema:Person
97 sg:person.014532727523.61 schema:affiliation grid-institutes:grid.258509.3
98 schema:familyName Pascu
99 schema:givenName Nicolae R.
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014532727523.61
101 rdf:type schema:Person
102 sg:pub.10.1007/978-0-387-34675-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037878151
103 https://doi.org/10.1007/978-0-387-34675-5
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/978-3-319-55402-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084845591
106 https://doi.org/10.1007/978-3-319-55402-0
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/s00025-019-0968-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111753332
109 https://doi.org/10.1007/s00025-019-0968-0
110 rdf:type schema:CreativeWork
111 grid-institutes:grid.258509.3 schema:alternateName Department of Mathematics, Kennesaw State University, Marietta, USA
112 schema:name Department of Mathematics, Kennesaw State University, Marietta, USA
113 rdf:type schema:Organization
114 grid-institutes:grid.5120.6 schema:alternateName Faculty of Mathematics and Computer Science, Transilvania University of Braşov, Braşov, Romania
115 schema:name Faculty of Mathematics and Computer Science, Transilvania University of Braşov, Braşov, Romania
116 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...