On the Hermite–Hadamard type inequality for ψ-Riemann–Liouville fractional integrals via convex functions View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Kui Liu, JinRong Wang, Donal O’Regan

ABSTRACT

In this paper, we establish a new Hermite–Hadamard inequality involving left-sided and right-sided ψ-Riemann–Liouville fractional integrals via convex functions. We also show two basic ψ-Riemann–Liouville fractional integral identities including the first order derivative of a given convex function, and these will be used to derive estimates for some fractional Hermite–Hadamard inequalities. Finally, we give some applications to special means of real numbers. More... »

PAGES

27

References to SciGraph publications

  • 1985-12. Hermite and convexity in AEQUATIONES MATHEMATICAE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s13660-019-1982-1

    DOI

    http://dx.doi.org/10.1186/s13660-019-1982-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1111753298


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "College of Science, Guizhou Institute of Technology, Guiyang, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Kui", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Qufu Normal University", 
              "id": "https://www.grid.ac/institutes/grid.412638.a", 
              "name": [
                "Department of Mathematics, Guizhou University, Guiyang, China", 
                "School of Mathematical Sciences, Qufu Normal University, Qufu, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "JinRong", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National University of Ireland, Galway", 
              "id": "https://www.grid.ac/institutes/grid.6142.1", 
              "name": [
                "School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "O\u2019Regan", 
            "givenName": "Donal", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02189414", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005084737", 
              "https://doi.org/10.1007/bf02189414"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02189414", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005084737", 
              "https://doi.org/10.1007/bf02189414"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmaa.2009.03.044", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009689835"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.mcm.2011.12.048", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017348681"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00036811.2012.727986", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017896199"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmaa.2009.11.015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025245669"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.amc.2010.11.047", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032561674"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.camwa.2011.12.023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046556656"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cnsns.2018.01.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100274197"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1515/dema-1999-0403", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100306340"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1515/9783110523621", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105057170"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-12", 
        "datePublishedReg": "2019-12-01", 
        "description": "In this paper, we establish a new Hermite\u2013Hadamard inequality involving left-sided and right-sided \u03c8-Riemann\u2013Liouville fractional integrals via convex functions. We also show two basic \u03c8-Riemann\u2013Liouville fractional integral identities including the first order derivative of a given convex function, and these will be used to derive estimates for some fractional Hermite\u2013Hadamard inequalities. Finally, we give some applications to special means of real numbers.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/s13660-019-1982-1", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136856", 
            "issn": [
              "1025-5834", 
              "1029-242X"
            ], 
            "name": "Journal of Inequalities and Applications", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2019"
          }
        ], 
        "name": "On the Hermite\u2013Hadamard type inequality for \u03c8-Riemann\u2013Liouville fractional integrals via convex functions", 
        "pagination": "27", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "77bdf30d3906821ed814fc839c3826ef5dad8460ab0320553854446ed80ed5f4"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s13660-019-1982-1"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1111753298"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s13660-019-1982-1", 
          "https://app.dimensions.ai/details/publication/pub.1111753298"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T08:58", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000326_0000000326/records_68460_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1186%2Fs13660-019-1982-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13660-019-1982-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13660-019-1982-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13660-019-1982-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13660-019-1982-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    109 TRIPLES      21 PREDICATES      37 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s13660-019-1982-1 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N807a45623f5a4fa4b145e14acf8bacdc
    4 schema:citation sg:pub.10.1007/bf02189414
    5 https://doi.org/10.1016/j.amc.2010.11.047
    6 https://doi.org/10.1016/j.camwa.2011.12.023
    7 https://doi.org/10.1016/j.cnsns.2018.01.005
    8 https://doi.org/10.1016/j.jmaa.2009.03.044
    9 https://doi.org/10.1016/j.jmaa.2009.11.015
    10 https://doi.org/10.1016/j.mcm.2011.12.048
    11 https://doi.org/10.1080/00036811.2012.727986
    12 https://doi.org/10.1515/9783110523621
    13 https://doi.org/10.1515/dema-1999-0403
    14 schema:datePublished 2019-12
    15 schema:datePublishedReg 2019-12-01
    16 schema:description In this paper, we establish a new Hermite–Hadamard inequality involving left-sided and right-sided ψ-Riemann–Liouville fractional integrals via convex functions. We also show two basic ψ-Riemann–Liouville fractional integral identities including the first order derivative of a given convex function, and these will be used to derive estimates for some fractional Hermite–Hadamard inequalities. Finally, we give some applications to special means of real numbers.
    17 schema:genre research_article
    18 schema:inLanguage en
    19 schema:isAccessibleForFree true
    20 schema:isPartOf N62bfe2c79bb6456286e25bc4629786d4
    21 N79e63ce478bd42b581f289e61d74e445
    22 sg:journal.1136856
    23 schema:name On the Hermite–Hadamard type inequality for ψ-Riemann–Liouville fractional integrals via convex functions
    24 schema:pagination 27
    25 schema:productId N5460b89e08e74141b4f7a140066c6b37
    26 Ndcb766a74dbf4be4b4e20feb4a48cfb7
    27 Ndd756067b5924398948d946242fea281
    28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111753298
    29 https://doi.org/10.1186/s13660-019-1982-1
    30 schema:sdDatePublished 2019-04-11T08:58
    31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    32 schema:sdPublisher N56503d1cb5ff41f6bd4727f5a9eb29ea
    33 schema:url https://link.springer.com/10.1186%2Fs13660-019-1982-1
    34 sgo:license sg:explorer/license/
    35 sgo:sdDataset articles
    36 rdf:type schema:ScholarlyArticle
    37 N5460b89e08e74141b4f7a140066c6b37 schema:name doi
    38 schema:value 10.1186/s13660-019-1982-1
    39 rdf:type schema:PropertyValue
    40 N56503d1cb5ff41f6bd4727f5a9eb29ea schema:name Springer Nature - SN SciGraph project
    41 rdf:type schema:Organization
    42 N62bfe2c79bb6456286e25bc4629786d4 schema:volumeNumber 2019
    43 rdf:type schema:PublicationVolume
    44 N79e63ce478bd42b581f289e61d74e445 schema:issueNumber 1
    45 rdf:type schema:PublicationIssue
    46 N807a45623f5a4fa4b145e14acf8bacdc rdf:first N90b7d4ec4b6345668cb268f7ced9e9f4
    47 rdf:rest Nc6b5efa94d7646f9829804d5917f9759
    48 N90b7d4ec4b6345668cb268f7ced9e9f4 schema:affiliation Naae5b9dcb0ee47e28cc0110b7eb34328
    49 schema:familyName Liu
    50 schema:givenName Kui
    51 rdf:type schema:Person
    52 Naae5b9dcb0ee47e28cc0110b7eb34328 schema:name College of Science, Guizhou Institute of Technology, Guiyang, China
    53 rdf:type schema:Organization
    54 Nb4880a2c209c424c86d2ec84d5f71734 schema:affiliation https://www.grid.ac/institutes/grid.6142.1
    55 schema:familyName O’Regan
    56 schema:givenName Donal
    57 rdf:type schema:Person
    58 Nc0674bd03c3f408fa273147c78a98a49 schema:affiliation https://www.grid.ac/institutes/grid.412638.a
    59 schema:familyName Wang
    60 schema:givenName JinRong
    61 rdf:type schema:Person
    62 Nc6b5efa94d7646f9829804d5917f9759 rdf:first Nc0674bd03c3f408fa273147c78a98a49
    63 rdf:rest Nda49c2cd34db4ddabc35dbd9f2314741
    64 Nda49c2cd34db4ddabc35dbd9f2314741 rdf:first Nb4880a2c209c424c86d2ec84d5f71734
    65 rdf:rest rdf:nil
    66 Ndcb766a74dbf4be4b4e20feb4a48cfb7 schema:name readcube_id
    67 schema:value 77bdf30d3906821ed814fc839c3826ef5dad8460ab0320553854446ed80ed5f4
    68 rdf:type schema:PropertyValue
    69 Ndd756067b5924398948d946242fea281 schema:name dimensions_id
    70 schema:value pub.1111753298
    71 rdf:type schema:PropertyValue
    72 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    73 schema:name Mathematical Sciences
    74 rdf:type schema:DefinedTerm
    75 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    76 schema:name Pure Mathematics
    77 rdf:type schema:DefinedTerm
    78 sg:journal.1136856 schema:issn 1025-5834
    79 1029-242X
    80 schema:name Journal of Inequalities and Applications
    81 rdf:type schema:Periodical
    82 sg:pub.10.1007/bf02189414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005084737
    83 https://doi.org/10.1007/bf02189414
    84 rdf:type schema:CreativeWork
    85 https://doi.org/10.1016/j.amc.2010.11.047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032561674
    86 rdf:type schema:CreativeWork
    87 https://doi.org/10.1016/j.camwa.2011.12.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046556656
    88 rdf:type schema:CreativeWork
    89 https://doi.org/10.1016/j.cnsns.2018.01.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100274197
    90 rdf:type schema:CreativeWork
    91 https://doi.org/10.1016/j.jmaa.2009.03.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009689835
    92 rdf:type schema:CreativeWork
    93 https://doi.org/10.1016/j.jmaa.2009.11.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025245669
    94 rdf:type schema:CreativeWork
    95 https://doi.org/10.1016/j.mcm.2011.12.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017348681
    96 rdf:type schema:CreativeWork
    97 https://doi.org/10.1080/00036811.2012.727986 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017896199
    98 rdf:type schema:CreativeWork
    99 https://doi.org/10.1515/9783110523621 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105057170
    100 rdf:type schema:CreativeWork
    101 https://doi.org/10.1515/dema-1999-0403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100306340
    102 rdf:type schema:CreativeWork
    103 https://www.grid.ac/institutes/grid.412638.a schema:alternateName Qufu Normal University
    104 schema:name Department of Mathematics, Guizhou University, Guiyang, China
    105 School of Mathematical Sciences, Qufu Normal University, Qufu, China
    106 rdf:type schema:Organization
    107 https://www.grid.ac/institutes/grid.6142.1 schema:alternateName National University of Ireland, Galway
    108 schema:name School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland
    109 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...