A reverse Mulholland-type inequality in the whole plane View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Jianquan Liao, Bicheng Yang

ABSTRACT

We present a new reverse Mulholland-type inequality in the whole plane with a best possible constant factor by introducing multiparameters, applying weight coefficients, and using the Hermite-Hadamard inequality. Moreover, we consider equivalent forms and some particular cases.

PAGES

79

References to SciGraph publications

Journal

TITLE

Journal of Inequalities and Applications

ISSUE

1

VOLUME

2018

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13660-018-1669-z

DOI

http://dx.doi.org/10.1186/s13660-018-1669-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1103205887

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29674835


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "Guangdong Institute of Education", 
          "id": "https://www.grid.ac/institutes/grid.440716.0", 
          "name": [
            "Department of Mathematics, Guangdong University of Education, Guangzhou, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liao", 
        "givenName": "Jianquan", 
        "id": "sg:person.014310421511.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014310421511.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Guangdong Institute of Education", 
          "id": "https://www.grid.ac/institutes/grid.440716.0", 
          "name": [
            "Department of Mathematics, Guangdong University of Education, Guangzhou, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Bicheng", 
        "id": "sg:person.012302163601.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012302163601.99"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1001459262", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-011-3562-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001459262", 
          "https://doi.org/10.1007/978-94-011-3562-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-011-3562-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001459262", 
          "https://doi.org/10.1007/978-94-011-3562-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmaa.2015.06.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006141960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2016/9197476", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018876883"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13660-016-1075-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020288218", 
          "https://doi.org/10.1186/s13660-016-1075-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13660-016-1075-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020288218", 
          "https://doi.org/10.1186/s13660-016-1075-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0004972700039423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031438188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10476-012-0402-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044943849", 
          "https://doi.org/10.1007/s10476-012-0402-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2013/628250", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046772781"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1215/17358787-3495561", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064414553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.15352/bjma/1313363000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067742242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7153/mia-08-04", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073624463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7153/mia-08-04", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073624463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7153/mia-08-04", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073624463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7153/mia-08-04", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073624463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7153/mia-08-04", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073624463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13660-017-1589-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100089520", 
          "https://doi.org/10.1186/s13660-017-1589-3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "We present a new reverse Mulholland-type inequality in the whole plane with a best possible constant factor by introducing multiparameters, applying weight coefficients, and using the Hermite-Hadamard inequality. Moreover, we consider equivalent forms and some particular cases.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s13660-018-1669-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136856", 
        "issn": [
          "1025-5834", 
          "1029-242X"
        ], 
        "name": "Journal of Inequalities and Applications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2018"
      }
    ], 
    "name": "A reverse Mulholland-type inequality in the whole plane", 
    "pagination": "79", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13660-018-1669-z"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "981e0f5e3b82f4362a014decf6ff9d4c49d204a95dee08c4d27c23780bad0da2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1103205887"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101697598"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29674835"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13660-018-1669-z", 
      "https://app.dimensions.ai/details/publication/pub.1103205887"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T08:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000375_0000000375/records_91429_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs13660-018-1669-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13660-018-1669-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13660-018-1669-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13660-018-1669-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13660-018-1669-z'


 

This table displays all metadata directly associated to this object as RDF triples.

107 TRIPLES      20 PREDICATES      39 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13660-018-1669-z schema:author Nd63f28d9967c45dcb436146e20378f2c
2 schema:citation sg:pub.10.1007/978-94-011-3562-7
3 sg:pub.10.1007/s10476-012-0402-2
4 sg:pub.10.1186/s13660-016-1075-3
5 sg:pub.10.1186/s13660-017-1589-3
6 https://app.dimensions.ai/details/publication/pub.1001459262
7 https://doi.org/10.1016/j.jmaa.2015.06.019
8 https://doi.org/10.1017/s0004972700039423
9 https://doi.org/10.1155/2013/628250
10 https://doi.org/10.1155/2016/9197476
11 https://doi.org/10.1215/17358787-3495561
12 https://doi.org/10.15352/bjma/1313363000
13 https://doi.org/10.7153/mia-08-04
14 schema:datePublished 2018-12
15 schema:datePublishedReg 2018-12-01
16 schema:description We present a new reverse Mulholland-type inequality in the whole plane with a best possible constant factor by introducing multiparameters, applying weight coefficients, and using the Hermite-Hadamard inequality. Moreover, we consider equivalent forms and some particular cases.
17 schema:genre research_article
18 schema:inLanguage en
19 schema:isAccessibleForFree true
20 schema:isPartOf N50b83bdc47e24069bf589085336a5b72
21 N8bbe3aa827e2474a84ec00c30fab6bbc
22 sg:journal.1136856
23 schema:name A reverse Mulholland-type inequality in the whole plane
24 schema:pagination 79
25 schema:productId N1856bd4e9c6b4585bf39ef2aae9fe354
26 N2e690c99516b4570a45fb3053e87ec83
27 N30aefa229b8f4828ad0b07ed428f892e
28 Naa4103e72df54b8eac1abdd59448966f
29 Nc2fff90efd35497fbf07dbae7bb8335d
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103205887
31 https://doi.org/10.1186/s13660-018-1669-z
32 schema:sdDatePublished 2019-04-15T08:59
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher N8ec2a3cfc83b441880a981d3d37cfb93
35 schema:url https://link.springer.com/10.1186%2Fs13660-018-1669-z
36 sgo:license sg:explorer/license/
37 sgo:sdDataset articles
38 rdf:type schema:ScholarlyArticle
39 N1856bd4e9c6b4585bf39ef2aae9fe354 schema:name doi
40 schema:value 10.1186/s13660-018-1669-z
41 rdf:type schema:PropertyValue
42 N2e690c99516b4570a45fb3053e87ec83 schema:name dimensions_id
43 schema:value pub.1103205887
44 rdf:type schema:PropertyValue
45 N30aefa229b8f4828ad0b07ed428f892e schema:name nlm_unique_id
46 schema:value 101697598
47 rdf:type schema:PropertyValue
48 N50b83bdc47e24069bf589085336a5b72 schema:volumeNumber 2018
49 rdf:type schema:PublicationVolume
50 N8bbe3aa827e2474a84ec00c30fab6bbc schema:issueNumber 1
51 rdf:type schema:PublicationIssue
52 N8ec2a3cfc83b441880a981d3d37cfb93 schema:name Springer Nature - SN SciGraph project
53 rdf:type schema:Organization
54 N9b3d56b420e64d66ba8cb7c3d80d418b rdf:first sg:person.012302163601.99
55 rdf:rest rdf:nil
56 Naa4103e72df54b8eac1abdd59448966f schema:name readcube_id
57 schema:value 981e0f5e3b82f4362a014decf6ff9d4c49d204a95dee08c4d27c23780bad0da2
58 rdf:type schema:PropertyValue
59 Nc2fff90efd35497fbf07dbae7bb8335d schema:name pubmed_id
60 schema:value 29674835
61 rdf:type schema:PropertyValue
62 Nd63f28d9967c45dcb436146e20378f2c rdf:first sg:person.014310421511.37
63 rdf:rest N9b3d56b420e64d66ba8cb7c3d80d418b
64 sg:journal.1136856 schema:issn 1025-5834
65 1029-242X
66 schema:name Journal of Inequalities and Applications
67 rdf:type schema:Periodical
68 sg:person.012302163601.99 schema:affiliation https://www.grid.ac/institutes/grid.440716.0
69 schema:familyName Yang
70 schema:givenName Bicheng
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012302163601.99
72 rdf:type schema:Person
73 sg:person.014310421511.37 schema:affiliation https://www.grid.ac/institutes/grid.440716.0
74 schema:familyName Liao
75 schema:givenName Jianquan
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014310421511.37
77 rdf:type schema:Person
78 sg:pub.10.1007/978-94-011-3562-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001459262
79 https://doi.org/10.1007/978-94-011-3562-7
80 rdf:type schema:CreativeWork
81 sg:pub.10.1007/s10476-012-0402-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044943849
82 https://doi.org/10.1007/s10476-012-0402-2
83 rdf:type schema:CreativeWork
84 sg:pub.10.1186/s13660-016-1075-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020288218
85 https://doi.org/10.1186/s13660-016-1075-3
86 rdf:type schema:CreativeWork
87 sg:pub.10.1186/s13660-017-1589-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100089520
88 https://doi.org/10.1186/s13660-017-1589-3
89 rdf:type schema:CreativeWork
90 https://app.dimensions.ai/details/publication/pub.1001459262 schema:CreativeWork
91 https://doi.org/10.1016/j.jmaa.2015.06.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006141960
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1017/s0004972700039423 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031438188
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1155/2013/628250 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046772781
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1155/2016/9197476 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018876883
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1215/17358787-3495561 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064414553
100 rdf:type schema:CreativeWork
101 https://doi.org/10.15352/bjma/1313363000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067742242
102 rdf:type schema:CreativeWork
103 https://doi.org/10.7153/mia-08-04 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073624463
104 rdf:type schema:CreativeWork
105 https://www.grid.ac/institutes/grid.440716.0 schema:alternateName Guangdong Institute of Education
106 schema:name Department of Mathematics, Guangdong University of Education, Guangzhou, P.R. China
107 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...