Quantitative unique continuation for the linear coupled heat equations View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-09-21

AUTHORS

Guojie Zheng, Keqiang Li, Jun Li

ABSTRACT

In this paper, we established a quantitative unique continuation results for a coupled heat equations, with the homogeneous Dirichlet boundary condition, on a bounded convex domain Ω of Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{R}^{d}$\end{document} with smooth boundary ∂Ω. Our result shows that the value of the solutions can be determined uniquely by its value on an arbitrary open subset ω of Ω at any given positive time T. More... »

PAGES

234

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13660-017-1508-7

DOI

http://dx.doi.org/10.1186/s13660-017-1508-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091880296

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28989260


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "College of Mathematics and Information Science, Henan Normal University, 453007, Xinxiang, P.R. China", 
          "id": "http://www.grid.ac/institutes/grid.462338.8", 
          "name": [
            "College of Mathematics and Information Science, Henan Normal University, 453007, Xinxiang, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zheng", 
        "givenName": "Guojie", 
        "id": "sg:person.07375513704.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07375513704.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "College of Mathematics and Information Science, Henan Normal University, 453007, Xinxiang, P.R. China", 
          "id": "http://www.grid.ac/institutes/grid.462338.8", 
          "name": [
            "College of Mathematics and Information Science, Henan Normal University, 453007, Xinxiang, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Keqiang", 
        "id": "sg:person.010622121653.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010622121653.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "College of Mathematics and Information Science, Henan Normal University, 453007, Xinxiang, P.R. China", 
          "id": "http://www.grid.ac/institutes/grid.462338.8", 
          "name": [
            "College of Mathematics and Information Science, Henan Normal University, 453007, Xinxiang, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Jun", 
        "id": "sg:person.011417502253.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011417502253.23"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2017-09-21", 
    "datePublishedReg": "2017-09-21", 
    "description": "In this paper, we established a quantitative unique continuation results for a coupled heat equations, with the homogeneous Dirichlet boundary condition, on a bounded convex domain \u03a9 of Rd\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\mathbb{R}^{d}$\\end{document} with smooth boundary \u2202\u03a9. Our result shows that the value of the solutions can be determined uniquely by its value on an arbitrary open subset \u03c9 of \u03a9 at any given positive time\u00a0T.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s13660-017-1508-7", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136856", 
        "issn": [
          "1025-5834", 
          "1029-242X"
        ], 
        "name": "Journal of Inequalities and Applications", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2017"
      }
    ], 
    "keywords": [
      "heat equation", 
      "quantitative unique continuation results", 
      "quantitative unique continuation", 
      "homogeneous Dirichlet boundary conditions", 
      "open subset \u03a9", 
      "unique continuation results", 
      "Dirichlet boundary conditions", 
      "convex domain \u03a9", 
      "continuation results", 
      "positive time", 
      "subset \u03a9", 
      "unique continuation", 
      "boundary conditions", 
      "domain \u03a9", 
      "equations", 
      "solution", 
      "continuation", 
      "results", 
      "values", 
      "conditions", 
      "time", 
      "paper"
    ], 
    "name": "Quantitative unique continuation for the linear coupled heat equations", 
    "pagination": "234", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091880296"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13660-017-1508-7"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28989260"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13660-017-1508-7", 
      "https://app.dimensions.ai/details/publication/pub.1091880296"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_727.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s13660-017-1508-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13660-017-1508-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13660-017-1508-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13660-017-1508-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13660-017-1508-7'


 

This table displays all metadata directly associated to this object as RDF triples.

101 TRIPLES      20 PREDICATES      48 URIs      39 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13660-017-1508-7 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 anzsrc-for:0102
4 schema:author N38aebaf8ecc149beb5f82c2af35c8c95
5 schema:datePublished 2017-09-21
6 schema:datePublishedReg 2017-09-21
7 schema:description In this paper, we established a quantitative unique continuation results for a coupled heat equations, with the homogeneous Dirichlet boundary condition, on a bounded convex domain Ω of Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{R}^{d}$\end{document} with smooth boundary ∂Ω. Our result shows that the value of the solutions can be determined uniquely by its value on an arbitrary open subset ω of Ω at any given positive time T.
8 schema:genre article
9 schema:isAccessibleForFree true
10 schema:isPartOf Na8e62c644e354903806a624218b4a482
11 Ne95714b965b94ad9b7f67a29e9cf908f
12 sg:journal.1136856
13 schema:keywords Dirichlet boundary conditions
14 boundary conditions
15 conditions
16 continuation
17 continuation results
18 convex domain Ω
19 domain Ω
20 equations
21 heat equation
22 homogeneous Dirichlet boundary conditions
23 open subset Ω
24 paper
25 positive time
26 quantitative unique continuation
27 quantitative unique continuation results
28 results
29 solution
30 subset Ω
31 time
32 unique continuation
33 unique continuation results
34 values
35 schema:name Quantitative unique continuation for the linear coupled heat equations
36 schema:pagination 234
37 schema:productId N1cfc5051a0994fb2bb6e37d0651253be
38 N50fec1c549624f2193a113162a1c350b
39 N55c1a577e49842ebaa7b60124b4fb767
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091880296
41 https://doi.org/10.1186/s13660-017-1508-7
42 schema:sdDatePublished 2022-12-01T06:35
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher Nea8bb3cb0d454457843d02d4e26fdab9
45 schema:url https://doi.org/10.1186/s13660-017-1508-7
46 sgo:license sg:explorer/license/
47 sgo:sdDataset articles
48 rdf:type schema:ScholarlyArticle
49 N1cfc5051a0994fb2bb6e37d0651253be schema:name dimensions_id
50 schema:value pub.1091880296
51 rdf:type schema:PropertyValue
52 N38aebaf8ecc149beb5f82c2af35c8c95 rdf:first sg:person.07375513704.14
53 rdf:rest Ne263fc65bbf44617b512762871a98feb
54 N3e16d7b672864952a5b2104951015e4d rdf:first sg:person.011417502253.23
55 rdf:rest rdf:nil
56 N50fec1c549624f2193a113162a1c350b schema:name doi
57 schema:value 10.1186/s13660-017-1508-7
58 rdf:type schema:PropertyValue
59 N55c1a577e49842ebaa7b60124b4fb767 schema:name pubmed_id
60 schema:value 28989260
61 rdf:type schema:PropertyValue
62 Na8e62c644e354903806a624218b4a482 schema:issueNumber 1
63 rdf:type schema:PublicationIssue
64 Ne263fc65bbf44617b512762871a98feb rdf:first sg:person.010622121653.50
65 rdf:rest N3e16d7b672864952a5b2104951015e4d
66 Ne95714b965b94ad9b7f67a29e9cf908f schema:volumeNumber 2017
67 rdf:type schema:PublicationVolume
68 Nea8bb3cb0d454457843d02d4e26fdab9 schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
71 schema:name Mathematical Sciences
72 rdf:type schema:DefinedTerm
73 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
74 schema:name Pure Mathematics
75 rdf:type schema:DefinedTerm
76 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
77 schema:name Applied Mathematics
78 rdf:type schema:DefinedTerm
79 sg:journal.1136856 schema:issn 1025-5834
80 1029-242X
81 schema:name Journal of Inequalities and Applications
82 schema:publisher Springer Nature
83 rdf:type schema:Periodical
84 sg:person.010622121653.50 schema:affiliation grid-institutes:grid.462338.8
85 schema:familyName Li
86 schema:givenName Keqiang
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010622121653.50
88 rdf:type schema:Person
89 sg:person.011417502253.23 schema:affiliation grid-institutes:grid.462338.8
90 schema:familyName Li
91 schema:givenName Jun
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011417502253.23
93 rdf:type schema:Person
94 sg:person.07375513704.14 schema:affiliation grid-institutes:grid.462338.8
95 schema:familyName Zheng
96 schema:givenName Guojie
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07375513704.14
98 rdf:type schema:Person
99 grid-institutes:grid.462338.8 schema:alternateName College of Mathematics and Information Science, Henan Normal University, 453007, Xinxiang, P.R. China
100 schema:name College of Mathematics and Information Science, Henan Normal University, 453007, Xinxiang, P.R. China
101 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...