Ontology type: schema:ScholarlyArticle Open Access: True
2017-05-23
AUTHORSManjari Sidharth, PN Agrawal, Serkan Araci
ABSTRACTThe present paper introduces the Szász-Durrmeyer type operators based on Boas-Buck type polynomials which include Brenke type polynomials, Sheffer polynomials and Appell polynomials considered by Sucu et al. (Abstr. Appl. Anal. 2012:680340, 2012). We establish the moments of the operator and a Voronvskaja type asymptotic theorem and then proceed to studying the convergence of the operators with the help of Lipschitz type space and weighted modulus of continuity. Next, we obtain a direct approximation theorem with the aid of unified Ditzian-Totik modulus of smoothness. Furthermore, we study the approximation of functions whose derivatives are locally of bounded variation. More... »
PAGES122
http://scigraph.springernature.com/pub.10.1186/s13660-017-1396-x
DOIhttp://dx.doi.org/10.1186/s13660-017-1396-x
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1085559070
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/28603401
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Mathematics, Indian Institute of Technology Roorkee, 247667, Roorkee, India",
"id": "http://www.grid.ac/institutes/grid.19003.3b",
"name": [
"Department of Mathematics, Indian Institute of Technology Roorkee, 247667, Roorkee, India"
],
"type": "Organization"
},
"familyName": "Sidharth",
"givenName": "Manjari",
"id": "sg:person.016710430137.08",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016710430137.08"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Mathematics, Indian Institute of Technology Roorkee, 247667, Roorkee, India",
"id": "http://www.grid.ac/institutes/grid.19003.3b",
"name": [
"Department of Mathematics, Indian Institute of Technology Roorkee, 247667, Roorkee, India"
],
"type": "Organization"
},
"familyName": "Agrawal",
"givenName": "PN",
"id": "sg:person.07413637437.68",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07413637437.68"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Economics, Faculty of Economics, Administrative and Social Sciences, Hasan Kalyoncu University, 27410, Gaziantep, Turkey",
"id": "http://www.grid.ac/institutes/grid.440437.0",
"name": [
"Department of Economics, Faculty of Economics, Administrative and Social Sciences, Hasan Kalyoncu University, 27410, Gaziantep, Turkey"
],
"type": "Organization"
},
"familyName": "Araci",
"givenName": "Serkan",
"id": "sg:person.012527247176.37",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012527247176.37"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s10998-015-0091-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1034975688",
"https://doi.org/10.1007/s10998-015-0091-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1215/20088752-3764507",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1064414723",
"https://doi.org/10.1215/20088752-3764507"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4612-4778-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1015861055",
"https://doi.org/10.1007/978-1-4612-4778-4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s13373-011-0005-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1004972157",
"https://doi.org/10.1007/s13373-011-0005-4"
],
"type": "CreativeWork"
}
],
"datePublished": "2017-05-23",
"datePublishedReg": "2017-05-23",
"description": "The present paper introduces the Sz\u00e1sz-Durrmeyer type operators based on Boas-Buck type polynomials which include Brenke type polynomials, Sheffer polynomials and Appell polynomials considered by Sucu et al. (Abstr. Appl. Anal. 2012:680340, 2012). We establish the moments of the operator and a Voronvskaja type asymptotic theorem and then proceed to studying the convergence of the operators with the help of Lipschitz type space and weighted modulus of continuity. Next, we obtain a direct approximation theorem with the aid of unified Ditzian-Totik modulus of smoothness. Furthermore, we study the approximation of functions whose derivatives are locally of bounded variation.",
"genre": "article",
"id": "sg:pub.10.1186/s13660-017-1396-x",
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1136856",
"issn": [
"1025-5834",
"1029-242X"
],
"name": "Journal of Inequalities and Applications",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "2017"
}
],
"keywords": [
"Brenke type polynomials",
"direct approximation theorem",
"Lipschitz-type spaces",
"type polynomials",
"approximation of functions",
"Ditzian-Totik modulus",
"Sz\u00e1sz\u2013Durrmeyer operators",
"asymptotic theorem",
"modulus of continuity",
"approximation theorem",
"type operators",
"Sheffer polynomials",
"Appell polynomials",
"type spaces",
"polynomials",
"theorem",
"operators",
"present paper",
"approximation",
"convergence",
"et al",
"smoothness",
"space",
"moment",
"modulus",
"function",
"continuity",
"derivatives",
"help",
"al",
"variation",
"aid",
"types",
"paper"
],
"name": "Sz\u00e1sz-Durrmeyer operators involving Boas-Buck polynomials of blending type",
"pagination": "122",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1085559070"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1186/s13660-017-1396-x"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"28603401"
]
}
],
"sameAs": [
"https://doi.org/10.1186/s13660-017-1396-x",
"https://app.dimensions.ai/details/publication/pub.1085559070"
],
"sdDataset": "articles",
"sdDatePublished": "2022-08-04T17:04",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_724.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1186/s13660-017-1396-x"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13660-017-1396-x'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13660-017-1396-x'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13660-017-1396-x'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13660-017-1396-x'
This table displays all metadata directly associated to this object as RDF triples.
128 TRIPLES
21 PREDICATES
63 URIs
51 LITERALS
7 BLANK NODES