Szász-Durrmeyer operators involving Boas-Buck polynomials of blending type View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-05-23

AUTHORS

Manjari Sidharth, PN Agrawal, Serkan Araci

ABSTRACT

The present paper introduces the Szász-Durrmeyer type operators based on Boas-Buck type polynomials which include Brenke type polynomials, Sheffer polynomials and Appell polynomials considered by Sucu et al. (Abstr. Appl. Anal. 2012:680340, 2012). We establish the moments of the operator and a Voronvskaja type asymptotic theorem and then proceed to studying the convergence of the operators with the help of Lipschitz type space and weighted modulus of continuity. Next, we obtain a direct approximation theorem with the aid of unified Ditzian-Totik modulus of smoothness. Furthermore, we study the approximation of functions whose derivatives are locally of bounded variation. More... »

PAGES

122

References to SciGraph publications

  • 2011-03-25. Rate of convergence for generalized Szász operators in BULLETIN OF MATHEMATICAL SCIENCES
  • 2015-07-31. Approximation by modified Szász-Durrmeyer operators in PERIODICA MATHEMATICA HUNGARICA
  • 2017-02. Baskakov–Szász-type operators based on inverse Pólya–Eggenberger distribution in ANNALS OF FUNCTIONAL ANALYSIS
  • 1987. Moduli of Smoothness in NONE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s13660-017-1396-x

    DOI

    http://dx.doi.org/10.1186/s13660-017-1396-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1085559070

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/28603401


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Mathematics, Indian Institute of Technology Roorkee, 247667, Roorkee, India", 
              "id": "http://www.grid.ac/institutes/grid.19003.3b", 
              "name": [
                "Department of Mathematics, Indian Institute of Technology Roorkee, 247667, Roorkee, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sidharth", 
            "givenName": "Manjari", 
            "id": "sg:person.016710430137.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016710430137.08"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mathematics, Indian Institute of Technology Roorkee, 247667, Roorkee, India", 
              "id": "http://www.grid.ac/institutes/grid.19003.3b", 
              "name": [
                "Department of Mathematics, Indian Institute of Technology Roorkee, 247667, Roorkee, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Agrawal", 
            "givenName": "PN", 
            "id": "sg:person.07413637437.68", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07413637437.68"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Economics, Faculty of Economics, Administrative and Social Sciences, Hasan Kalyoncu University, 27410, Gaziantep, Turkey", 
              "id": "http://www.grid.ac/institutes/grid.440437.0", 
              "name": [
                "Department of Economics, Faculty of Economics, Administrative and Social Sciences, Hasan Kalyoncu University, 27410, Gaziantep, Turkey"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Araci", 
            "givenName": "Serkan", 
            "id": "sg:person.012527247176.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012527247176.37"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s10998-015-0091-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034975688", 
              "https://doi.org/10.1007/s10998-015-0091-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1215/20088752-3764507", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064414723", 
              "https://doi.org/10.1215/20088752-3764507"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-4778-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015861055", 
              "https://doi.org/10.1007/978-1-4612-4778-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13373-011-0005-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004972157", 
              "https://doi.org/10.1007/s13373-011-0005-4"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-05-23", 
        "datePublishedReg": "2017-05-23", 
        "description": "The present paper introduces the Sz\u00e1sz-Durrmeyer type operators based on Boas-Buck type polynomials which include Brenke type polynomials, Sheffer polynomials and Appell polynomials considered by Sucu et al. (Abstr. Appl. Anal. 2012:680340, 2012). We establish the moments of the operator and a Voronvskaja type asymptotic theorem and then proceed to studying the convergence of the operators with the help of Lipschitz type space and weighted modulus of continuity. Next, we obtain a direct approximation theorem with the aid of unified Ditzian-Totik modulus of smoothness. Furthermore, we study the approximation of functions whose derivatives are locally of bounded variation.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s13660-017-1396-x", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136856", 
            "issn": [
              "1025-5834", 
              "1029-242X"
            ], 
            "name": "Journal of Inequalities and Applications", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2017"
          }
        ], 
        "keywords": [
          "Brenke type polynomials", 
          "direct approximation theorem", 
          "Lipschitz-type spaces", 
          "type polynomials", 
          "approximation of functions", 
          "Ditzian-Totik modulus", 
          "Sz\u00e1sz\u2013Durrmeyer operators", 
          "asymptotic theorem", 
          "modulus of continuity", 
          "approximation theorem", 
          "type operators", 
          "Sheffer polynomials", 
          "Appell polynomials", 
          "type spaces", 
          "polynomials", 
          "theorem", 
          "operators", 
          "present paper", 
          "approximation", 
          "convergence", 
          "et al", 
          "smoothness", 
          "space", 
          "moment", 
          "modulus", 
          "function", 
          "continuity", 
          "derivatives", 
          "help", 
          "al", 
          "variation", 
          "aid", 
          "types", 
          "paper"
        ], 
        "name": "Sz\u00e1sz-Durrmeyer operators involving Boas-Buck polynomials of blending type", 
        "pagination": "122", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1085559070"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s13660-017-1396-x"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "28603401"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s13660-017-1396-x", 
          "https://app.dimensions.ai/details/publication/pub.1085559070"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-08-04T17:04", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_724.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s13660-017-1396-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13660-017-1396-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13660-017-1396-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13660-017-1396-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13660-017-1396-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    128 TRIPLES      21 PREDICATES      63 URIs      51 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s13660-017-1396-x schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N2804c4ecf1a14342b85cc2a97807699f
    4 schema:citation sg:pub.10.1007/978-1-4612-4778-4
    5 sg:pub.10.1007/s10998-015-0091-2
    6 sg:pub.10.1007/s13373-011-0005-4
    7 sg:pub.10.1215/20088752-3764507
    8 schema:datePublished 2017-05-23
    9 schema:datePublishedReg 2017-05-23
    10 schema:description The present paper introduces the Szász-Durrmeyer type operators based on Boas-Buck type polynomials which include Brenke type polynomials, Sheffer polynomials and Appell polynomials considered by Sucu et al. (Abstr. Appl. Anal. 2012:680340, 2012). We establish the moments of the operator and a Voronvskaja type asymptotic theorem and then proceed to studying the convergence of the operators with the help of Lipschitz type space and weighted modulus of continuity. Next, we obtain a direct approximation theorem with the aid of unified Ditzian-Totik modulus of smoothness. Furthermore, we study the approximation of functions whose derivatives are locally of bounded variation.
    11 schema:genre article
    12 schema:isAccessibleForFree true
    13 schema:isPartOf N122d1f2f222342f3a3ecde64202ccd05
    14 N1d1e970e8d074913a7c3091bacbffcbc
    15 sg:journal.1136856
    16 schema:keywords Appell polynomials
    17 Brenke type polynomials
    18 Ditzian-Totik modulus
    19 Lipschitz-type spaces
    20 Sheffer polynomials
    21 Szász–Durrmeyer operators
    22 aid
    23 al
    24 approximation
    25 approximation of functions
    26 approximation theorem
    27 asymptotic theorem
    28 continuity
    29 convergence
    30 derivatives
    31 direct approximation theorem
    32 et al
    33 function
    34 help
    35 modulus
    36 modulus of continuity
    37 moment
    38 operators
    39 paper
    40 polynomials
    41 present paper
    42 smoothness
    43 space
    44 theorem
    45 type operators
    46 type polynomials
    47 type spaces
    48 types
    49 variation
    50 schema:name Szász-Durrmeyer operators involving Boas-Buck polynomials of blending type
    51 schema:pagination 122
    52 schema:productId N51d5ec64f1cc46f0aaba6f4e6d966365
    53 N5e124b58b73a4369a0cc46365afd28a9
    54 Naa529201c6604846b0b17ef86a79f070
    55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085559070
    56 https://doi.org/10.1186/s13660-017-1396-x
    57 schema:sdDatePublished 2022-08-04T17:04
    58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    59 schema:sdPublisher Nf346e30b748f48ff9b94847b95d558f3
    60 schema:url https://doi.org/10.1186/s13660-017-1396-x
    61 sgo:license sg:explorer/license/
    62 sgo:sdDataset articles
    63 rdf:type schema:ScholarlyArticle
    64 N122d1f2f222342f3a3ecde64202ccd05 schema:volumeNumber 2017
    65 rdf:type schema:PublicationVolume
    66 N1b14c627d6524585a7a61270252fe44f rdf:first sg:person.07413637437.68
    67 rdf:rest Ne5be8b2051454663a135e4d3705f3ce3
    68 N1d1e970e8d074913a7c3091bacbffcbc schema:issueNumber 1
    69 rdf:type schema:PublicationIssue
    70 N2804c4ecf1a14342b85cc2a97807699f rdf:first sg:person.016710430137.08
    71 rdf:rest N1b14c627d6524585a7a61270252fe44f
    72 N51d5ec64f1cc46f0aaba6f4e6d966365 schema:name dimensions_id
    73 schema:value pub.1085559070
    74 rdf:type schema:PropertyValue
    75 N5e124b58b73a4369a0cc46365afd28a9 schema:name pubmed_id
    76 schema:value 28603401
    77 rdf:type schema:PropertyValue
    78 Naa529201c6604846b0b17ef86a79f070 schema:name doi
    79 schema:value 10.1186/s13660-017-1396-x
    80 rdf:type schema:PropertyValue
    81 Ne5be8b2051454663a135e4d3705f3ce3 rdf:first sg:person.012527247176.37
    82 rdf:rest rdf:nil
    83 Nf346e30b748f48ff9b94847b95d558f3 schema:name Springer Nature - SN SciGraph project
    84 rdf:type schema:Organization
    85 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    86 schema:name Mathematical Sciences
    87 rdf:type schema:DefinedTerm
    88 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    89 schema:name Pure Mathematics
    90 rdf:type schema:DefinedTerm
    91 sg:journal.1136856 schema:issn 1025-5834
    92 1029-242X
    93 schema:name Journal of Inequalities and Applications
    94 schema:publisher Springer Nature
    95 rdf:type schema:Periodical
    96 sg:person.012527247176.37 schema:affiliation grid-institutes:grid.440437.0
    97 schema:familyName Araci
    98 schema:givenName Serkan
    99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012527247176.37
    100 rdf:type schema:Person
    101 sg:person.016710430137.08 schema:affiliation grid-institutes:grid.19003.3b
    102 schema:familyName Sidharth
    103 schema:givenName Manjari
    104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016710430137.08
    105 rdf:type schema:Person
    106 sg:person.07413637437.68 schema:affiliation grid-institutes:grid.19003.3b
    107 schema:familyName Agrawal
    108 schema:givenName PN
    109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07413637437.68
    110 rdf:type schema:Person
    111 sg:pub.10.1007/978-1-4612-4778-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015861055
    112 https://doi.org/10.1007/978-1-4612-4778-4
    113 rdf:type schema:CreativeWork
    114 sg:pub.10.1007/s10998-015-0091-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034975688
    115 https://doi.org/10.1007/s10998-015-0091-2
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1007/s13373-011-0005-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004972157
    118 https://doi.org/10.1007/s13373-011-0005-4
    119 rdf:type schema:CreativeWork
    120 sg:pub.10.1215/20088752-3764507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064414723
    121 https://doi.org/10.1215/20088752-3764507
    122 rdf:type schema:CreativeWork
    123 grid-institutes:grid.19003.3b schema:alternateName Department of Mathematics, Indian Institute of Technology Roorkee, 247667, Roorkee, India
    124 schema:name Department of Mathematics, Indian Institute of Technology Roorkee, 247667, Roorkee, India
    125 rdf:type schema:Organization
    126 grid-institutes:grid.440437.0 schema:alternateName Department of Economics, Faculty of Economics, Administrative and Social Sciences, Hasan Kalyoncu University, 27410, Gaziantep, Turkey
    127 schema:name Department of Economics, Faculty of Economics, Administrative and Social Sciences, Hasan Kalyoncu University, 27410, Gaziantep, Turkey
    128 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...