Weak contractive integral inequalities and fixed points in modular metric spaces View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-03-05

AUTHORS

Nawab Hussain, Marwan A Kutbi, Nazra Sultana, Iram Iqbal

ABSTRACT

Branciari (Int. J. Math. Math. Sci. 29(9):531-536, 2002) gave an interesting supplement of Banach’s contraction principle for an integral-type inequality. In this paper, we introduce different notions of generalized ω-weak contractive inequalities of integral type in modular metric spaces and prove the presence and uniqueness of common fixed points for such contractions under ω-weak compatibility of underlying maps. Our results generalize and extend the results of Azadifar et al. (J. Inequal. Appl. 2013:483, 2013), Liu et al. (Fixed Point Theory Appl. 2013:2672013, 2013), Beygmohammadi and Razani (Int. J. Math. Math. Sci. 2010: Article ID 317107, 2010), and many others. Moreover, an example is provided here to demonstrate the applicability of the obtained results. More... »

PAGES

89

References to SciGraph publications

  • 2012-12-05. On P-contractions in ordered metric spaces in FIXED POINT THEORY AND APPLICATIONS
  • 2014-10-16. Common fixed points for a pair of mappings satisfying contractive conditions of integral type in JOURNAL OF INEQUALITIES AND APPLICATIONS
  • 1997. Principle of Weakly Contractive Maps in Hilbert Spaces in NEW RESULTS IN OPERATOR THEORY AND ITS APPLICATIONS
  • 2011-10-11. Fixed point theorems for mappings satisfying contractive conditions of integral type and applications in FIXED POINT THEORY AND APPLICATIONS
  • 2013-11-07. Integral type contractions in modular metric spaces in JOURNAL OF INEQUALITIES AND APPLICATIONS
  • 2013-11-07. Fixed point theorems for mappings satisfying contractive conditions of integral type in FIXED POINT THEORY AND APPLICATIONS
  • 2015-09-02. Fixed point results for generalized F-contractions in modular metric and fuzzy metric spaces in FIXED POINT THEORY AND APPLICATIONS
  • 2003-06. A fixed point theorem for a family of mappings in a fuzzy metric space in RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO SERIES 2
  • 2014-01-24. A new generalization of the Banach contraction principle in JOURNAL OF INEQUALITIES AND APPLICATIONS
  • 2011-12-02. Fixed point theorems for contraction mappings in modular metric spaces in FIXED POINT THEORY AND APPLICATIONS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s13660-016-1032-1

    DOI

    http://dx.doi.org/10.1186/s13660-016-1032-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1008775098


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Mathematics, King Abdulaziz University, P.O. Box 80203, 21589, Jeddah, Saudi Arabia", 
              "id": "http://www.grid.ac/institutes/grid.412125.1", 
              "name": [
                "Department of Mathematics, King Abdulaziz University, P.O. Box 80203, 21589, Jeddah, Saudi Arabia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hussain", 
            "givenName": "Nawab", 
            "id": "sg:person.0711601466.95", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711601466.95"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mathematics, King Abdulaziz University, P.O. Box 80203, 21589, Jeddah, Saudi Arabia", 
              "id": "http://www.grid.ac/institutes/grid.412125.1", 
              "name": [
                "Department of Mathematics, King Abdulaziz University, P.O. Box 80203, 21589, Jeddah, Saudi Arabia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kutbi", 
            "givenName": "Marwan A", 
            "id": "sg:person.012477305051.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012477305051.51"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mathematics, University of Sargodha, Sargodha, Pakistan", 
              "id": "http://www.grid.ac/institutes/grid.412782.a", 
              "name": [
                "Department of Mathematics, University of Sargodha, Sargodha, Pakistan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sultana", 
            "givenName": "Nazra", 
            "id": "sg:person.014551612041.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014551612041.05"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mathematics, University of Sargodha, Sargodha, Pakistan", 
              "id": "http://www.grid.ac/institutes/grid.412782.a", 
              "name": [
                "Department of Mathematics, University of Sargodha, Sargodha, Pakistan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Iqbal", 
            "givenName": "Iram", 
            "id": "sg:person.012364144245.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012364144245.37"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1186/1687-1812-2012-219", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008266538", 
              "https://doi.org/10.1186/1687-1812-2012-219"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1029-242x-2014-38", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039444248", 
              "https://doi.org/10.1186/1029-242x-2014-38"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1029-242x-2014-394", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015476691", 
              "https://doi.org/10.1186/1029-242x-2014-394"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-0348-8910-0_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038775544", 
              "https://doi.org/10.1007/978-3-0348-8910-0_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1029-242x-2013-483", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024723387", 
              "https://doi.org/10.1186/1029-242x-2013-483"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02872238", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024571392", 
              "https://doi.org/10.1007/bf02872238"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1687-1812-2011-93", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035454889", 
              "https://doi.org/10.1186/1687-1812-2011-93"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1687-1812-2013-267", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027216515", 
              "https://doi.org/10.1186/1687-1812-2013-267"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13663-015-0407-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035910926", 
              "https://doi.org/10.1186/s13663-015-0407-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1687-1812-2011-64", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022041541", 
              "https://doi.org/10.1186/1687-1812-2011-64"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-03-05", 
        "datePublishedReg": "2016-03-05", 
        "description": "Branciari (Int. J. Math. Math. Sci. 29(9):531-536, 2002) gave an interesting supplement of Banach\u2019s contraction principle for an integral-type inequality. In this paper, we introduce different notions of generalized \u03c9-weak contractive inequalities of integral type in modular metric spaces and prove the presence and uniqueness of common fixed points for such contractions under \u03c9-weak compatibility of underlying maps. Our results generalize and extend the results of Azadifar et al. (J.\u00a0Inequal. Appl. 2013:483, 2013), Liu et al. (Fixed Point Theory Appl. 2013:2672013, 2013), Beygmohammadi and Razani (Int. J. Math. Math. Sci. 2010: Article ID 317107, 2010), and many others. Moreover, an example is provided here to demonstrate the applicability of the obtained results.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s13660-016-1032-1", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136856", 
            "issn": [
              "1025-5834", 
              "1029-242X"
            ], 
            "name": "Journal of Inequalities and Applications", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2016"
          }
        ], 
        "keywords": [
          "such contractions", 
          "contraction principle", 
          "contraction", 
          "supplements", 
          "modular metric spaces", 
          "metric spaces", 
          "Banach contraction principle", 
          "results", 
          "integral inequality", 
          "integral type", 
          "interesting supplement", 
          "presence", 
          "inequality", 
          "types", 
          "et al", 
          "different notions", 
          "point", 
          "Liu et al", 
          "space", 
          "Razani", 
          "uniqueness", 
          "Branciari", 
          "applicability", 
          "principles", 
          "notion", 
          "maps", 
          "weak compatibility", 
          "al", 
          "compatibility", 
          "example", 
          "paper", 
          "integral-type inequality", 
          "weak contractive inequality", 
          "contractive inequalities", 
          "Azadifar et al", 
          "Beygmohammadi", 
          "Weak contractive integral inequalities", 
          "contractive integral inequalities"
        ], 
        "name": "Weak contractive integral inequalities and fixed points in modular metric spaces", 
        "pagination": "89", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1008775098"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s13660-016-1032-1"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s13660-016-1032-1", 
          "https://app.dimensions.ai/details/publication/pub.1008775098"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:35", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_699.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s13660-016-1032-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13660-016-1032-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13660-016-1032-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13660-016-1032-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13660-016-1032-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    160 TRIPLES      22 PREDICATES      73 URIs      55 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s13660-016-1032-1 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N80296674dee64ce192ee7bebf3853177
    4 schema:citation sg:pub.10.1007/978-3-0348-8910-0_2
    5 sg:pub.10.1007/bf02872238
    6 sg:pub.10.1186/1029-242x-2013-483
    7 sg:pub.10.1186/1029-242x-2014-38
    8 sg:pub.10.1186/1029-242x-2014-394
    9 sg:pub.10.1186/1687-1812-2011-64
    10 sg:pub.10.1186/1687-1812-2011-93
    11 sg:pub.10.1186/1687-1812-2012-219
    12 sg:pub.10.1186/1687-1812-2013-267
    13 sg:pub.10.1186/s13663-015-0407-1
    14 schema:datePublished 2016-03-05
    15 schema:datePublishedReg 2016-03-05
    16 schema:description Branciari (Int. J. Math. Math. Sci. 29(9):531-536, 2002) gave an interesting supplement of Banach’s contraction principle for an integral-type inequality. In this paper, we introduce different notions of generalized ω-weak contractive inequalities of integral type in modular metric spaces and prove the presence and uniqueness of common fixed points for such contractions under ω-weak compatibility of underlying maps. Our results generalize and extend the results of Azadifar et al. (J. Inequal. Appl. 2013:483, 2013), Liu et al. (Fixed Point Theory Appl. 2013:2672013, 2013), Beygmohammadi and Razani (Int. J. Math. Math. Sci. 2010: Article ID 317107, 2010), and many others. Moreover, an example is provided here to demonstrate the applicability of the obtained results.
    17 schema:genre article
    18 schema:inLanguage en
    19 schema:isAccessibleForFree true
    20 schema:isPartOf N2d4d8238bf374fd7aeeb4786be4fa0db
    21 N8231cb6df97f48e0aea9de25387d674c
    22 sg:journal.1136856
    23 schema:keywords Azadifar et al
    24 Banach contraction principle
    25 Beygmohammadi
    26 Branciari
    27 Liu et al
    28 Razani
    29 Weak contractive integral inequalities
    30 al
    31 applicability
    32 compatibility
    33 contraction
    34 contraction principle
    35 contractive inequalities
    36 contractive integral inequalities
    37 different notions
    38 et al
    39 example
    40 inequality
    41 integral inequality
    42 integral type
    43 integral-type inequality
    44 interesting supplement
    45 maps
    46 metric spaces
    47 modular metric spaces
    48 notion
    49 paper
    50 point
    51 presence
    52 principles
    53 results
    54 space
    55 such contractions
    56 supplements
    57 types
    58 uniqueness
    59 weak compatibility
    60 weak contractive inequality
    61 schema:name Weak contractive integral inequalities and fixed points in modular metric spaces
    62 schema:pagination 89
    63 schema:productId N92cd2b741caa4d758705732f5166de19
    64 Ne767bdcbc4d34739bb2f1b0869155307
    65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008775098
    66 https://doi.org/10.1186/s13660-016-1032-1
    67 schema:sdDatePublished 2021-12-01T19:35
    68 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    69 schema:sdPublisher N4af62712288c4d4788b825a228e69fbf
    70 schema:url https://doi.org/10.1186/s13660-016-1032-1
    71 sgo:license sg:explorer/license/
    72 sgo:sdDataset articles
    73 rdf:type schema:ScholarlyArticle
    74 N222601b7532447259c74cd32f3a6630a rdf:first sg:person.012477305051.51
    75 rdf:rest N922b3dd27db04103bf1e66a03a8403c1
    76 N2d4d8238bf374fd7aeeb4786be4fa0db schema:volumeNumber 2016
    77 rdf:type schema:PublicationVolume
    78 N4af62712288c4d4788b825a228e69fbf schema:name Springer Nature - SN SciGraph project
    79 rdf:type schema:Organization
    80 N70a45fd4f57f4016afcae9a8009892c9 rdf:first sg:person.012364144245.37
    81 rdf:rest rdf:nil
    82 N80296674dee64ce192ee7bebf3853177 rdf:first sg:person.0711601466.95
    83 rdf:rest N222601b7532447259c74cd32f3a6630a
    84 N8231cb6df97f48e0aea9de25387d674c schema:issueNumber 1
    85 rdf:type schema:PublicationIssue
    86 N922b3dd27db04103bf1e66a03a8403c1 rdf:first sg:person.014551612041.05
    87 rdf:rest N70a45fd4f57f4016afcae9a8009892c9
    88 N92cd2b741caa4d758705732f5166de19 schema:name dimensions_id
    89 schema:value pub.1008775098
    90 rdf:type schema:PropertyValue
    91 Ne767bdcbc4d34739bb2f1b0869155307 schema:name doi
    92 schema:value 10.1186/s13660-016-1032-1
    93 rdf:type schema:PropertyValue
    94 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    95 schema:name Mathematical Sciences
    96 rdf:type schema:DefinedTerm
    97 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    98 schema:name Pure Mathematics
    99 rdf:type schema:DefinedTerm
    100 sg:journal.1136856 schema:issn 1025-5834
    101 1029-242X
    102 schema:name Journal of Inequalities and Applications
    103 schema:publisher Springer Nature
    104 rdf:type schema:Periodical
    105 sg:person.012364144245.37 schema:affiliation grid-institutes:grid.412782.a
    106 schema:familyName Iqbal
    107 schema:givenName Iram
    108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012364144245.37
    109 rdf:type schema:Person
    110 sg:person.012477305051.51 schema:affiliation grid-institutes:grid.412125.1
    111 schema:familyName Kutbi
    112 schema:givenName Marwan A
    113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012477305051.51
    114 rdf:type schema:Person
    115 sg:person.014551612041.05 schema:affiliation grid-institutes:grid.412782.a
    116 schema:familyName Sultana
    117 schema:givenName Nazra
    118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014551612041.05
    119 rdf:type schema:Person
    120 sg:person.0711601466.95 schema:affiliation grid-institutes:grid.412125.1
    121 schema:familyName Hussain
    122 schema:givenName Nawab
    123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711601466.95
    124 rdf:type schema:Person
    125 sg:pub.10.1007/978-3-0348-8910-0_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038775544
    126 https://doi.org/10.1007/978-3-0348-8910-0_2
    127 rdf:type schema:CreativeWork
    128 sg:pub.10.1007/bf02872238 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024571392
    129 https://doi.org/10.1007/bf02872238
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1186/1029-242x-2013-483 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024723387
    132 https://doi.org/10.1186/1029-242x-2013-483
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1186/1029-242x-2014-38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039444248
    135 https://doi.org/10.1186/1029-242x-2014-38
    136 rdf:type schema:CreativeWork
    137 sg:pub.10.1186/1029-242x-2014-394 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015476691
    138 https://doi.org/10.1186/1029-242x-2014-394
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1186/1687-1812-2011-64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022041541
    141 https://doi.org/10.1186/1687-1812-2011-64
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1186/1687-1812-2011-93 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035454889
    144 https://doi.org/10.1186/1687-1812-2011-93
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1186/1687-1812-2012-219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008266538
    147 https://doi.org/10.1186/1687-1812-2012-219
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1186/1687-1812-2013-267 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027216515
    150 https://doi.org/10.1186/1687-1812-2013-267
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1186/s13663-015-0407-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035910926
    153 https://doi.org/10.1186/s13663-015-0407-1
    154 rdf:type schema:CreativeWork
    155 grid-institutes:grid.412125.1 schema:alternateName Department of Mathematics, King Abdulaziz University, P.O. Box 80203, 21589, Jeddah, Saudi Arabia
    156 schema:name Department of Mathematics, King Abdulaziz University, P.O. Box 80203, 21589, Jeddah, Saudi Arabia
    157 rdf:type schema:Organization
    158 grid-institutes:grid.412782.a schema:alternateName Department of Mathematics, University of Sargodha, Sargodha, Pakistan
    159 schema:name Department of Mathematics, University of Sargodha, Sargodha, Pakistan
    160 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...