A more accurate reverse half-discrete Hilbert-type inequality View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-12

AUTHORS

Aizhen Wang, Bicheng Yang

ABSTRACT

Using the way of weight functions and the idea of introducing parameters, and by means of Hermite-Hadamard’s inequality, a more accurate reverse half-discrete Hilbert-type inequality with the non-homogeneous kernel and a best constant factor is established. In addition, its best extension with parameters, the equivalent forms, as well as some particular cases are given. More... »

PAGES

85

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13660-015-0613-8

DOI

http://dx.doi.org/10.1186/s13660-015-0613-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1010108501


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Guangdong Institute of Education", 
          "id": "https://www.grid.ac/institutes/grid.440716.0", 
          "name": [
            "Department of Mathematics, Guangdong University of Education, 510303, Guangzhou, Guangdong, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Aizhen", 
        "id": "sg:person.012677707255.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012677707255.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Guangdong Institute of Education", 
          "id": "https://www.grid.ac/institutes/grid.440716.0", 
          "name": [
            "Department of Mathematics, Guangdong University of Education, 510303, Guangzhou, Guangdong, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Bicheng", 
        "id": "sg:person.012302163601.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012302163601.99"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1001459262", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-011-3562-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001459262", 
          "https://doi.org/10.1007/978-94-011-3562-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-011-3562-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001459262", 
          "https://doi.org/10.1007/978-94-011-3562-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1029-242x-2012-70", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007709146", 
          "https://doi.org/10.1186/1029-242x-2012-70"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmaa.2000.6766", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025818937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9939-98-04444-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030007043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmaa.1998.6043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049644219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1155/2007/47812", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053603993", 
          "https://doi.org/10.1155/2007/47812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.15352/afa/1399900031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067741984"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-12", 
    "datePublishedReg": "2015-12-01", 
    "description": "Using the way of weight functions and the idea of introducing parameters, and by means of Hermite-Hadamard\u2019s inequality, a more accurate reverse half-discrete Hilbert-type inequality with the non-homogeneous kernel and a best constant factor is established. In addition, its best extension with parameters, the equivalent forms, as well as some particular cases are given.", 
    "genre": "non_research_article", 
    "id": "sg:pub.10.1186/s13660-015-0613-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136856", 
        "issn": [
          "1025-5834", 
          "1029-242X"
        ], 
        "name": "Journal of Inequalities and Applications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2015"
      }
    ], 
    "name": "A more accurate reverse half-discrete Hilbert-type inequality", 
    "pagination": "85", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "302874ca65d0fef1a7f807fc28b01fbc6c6f7680ceb9fb6e51f07b8e6cd9f947"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13660-015-0613-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1010108501"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13660-015-0613-8", 
      "https://app.dimensions.ai/details/publication/pub.1010108501"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88236_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2Fs13660-015-0613-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13660-015-0613-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13660-015-0613-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13660-015-0613-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13660-015-0613-8'


 

This table displays all metadata directly associated to this object as RDF triples.

94 TRIPLES      21 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13660-015-0613-8 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N565a97bf149742f28ba553f08890bf91
4 schema:citation sg:pub.10.1007/978-94-011-3562-7
5 sg:pub.10.1155/2007/47812
6 sg:pub.10.1186/1029-242x-2012-70
7 https://app.dimensions.ai/details/publication/pub.1001459262
8 https://doi.org/10.1006/jmaa.1998.6043
9 https://doi.org/10.1006/jmaa.2000.6766
10 https://doi.org/10.1090/s0002-9939-98-04444-x
11 https://doi.org/10.15352/afa/1399900031
12 schema:datePublished 2015-12
13 schema:datePublishedReg 2015-12-01
14 schema:description Using the way of weight functions and the idea of introducing parameters, and by means of Hermite-Hadamard’s inequality, a more accurate reverse half-discrete Hilbert-type inequality with the non-homogeneous kernel and a best constant factor is established. In addition, its best extension with parameters, the equivalent forms, as well as some particular cases are given.
15 schema:genre non_research_article
16 schema:inLanguage en
17 schema:isAccessibleForFree true
18 schema:isPartOf N672902375f26444c8a8096c777f5e910
19 Nde57b148170a4f329a95c98afad507a2
20 sg:journal.1136856
21 schema:name A more accurate reverse half-discrete Hilbert-type inequality
22 schema:pagination 85
23 schema:productId N0d2fa878ffd044b6a608e164473fdb8f
24 N1dc5330a14984e83a99166d33c7a1489
25 Nf62bb69f9b9c419ea1c3063de397d0ec
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010108501
27 https://doi.org/10.1186/s13660-015-0613-8
28 schema:sdDatePublished 2019-04-11T13:09
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher N6176ced5918648b3a7a61142f5863501
31 schema:url http://link.springer.com/10.1186%2Fs13660-015-0613-8
32 sgo:license sg:explorer/license/
33 sgo:sdDataset articles
34 rdf:type schema:ScholarlyArticle
35 N0d2fa878ffd044b6a608e164473fdb8f schema:name dimensions_id
36 schema:value pub.1010108501
37 rdf:type schema:PropertyValue
38 N1dc5330a14984e83a99166d33c7a1489 schema:name doi
39 schema:value 10.1186/s13660-015-0613-8
40 rdf:type schema:PropertyValue
41 N451df68bd34e4c57bae9b58fef6e8700 rdf:first sg:person.012302163601.99
42 rdf:rest rdf:nil
43 N565a97bf149742f28ba553f08890bf91 rdf:first sg:person.012677707255.87
44 rdf:rest N451df68bd34e4c57bae9b58fef6e8700
45 N6176ced5918648b3a7a61142f5863501 schema:name Springer Nature - SN SciGraph project
46 rdf:type schema:Organization
47 N672902375f26444c8a8096c777f5e910 schema:volumeNumber 2015
48 rdf:type schema:PublicationVolume
49 Nde57b148170a4f329a95c98afad507a2 schema:issueNumber 1
50 rdf:type schema:PublicationIssue
51 Nf62bb69f9b9c419ea1c3063de397d0ec schema:name readcube_id
52 schema:value 302874ca65d0fef1a7f807fc28b01fbc6c6f7680ceb9fb6e51f07b8e6cd9f947
53 rdf:type schema:PropertyValue
54 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
55 schema:name Mathematical Sciences
56 rdf:type schema:DefinedTerm
57 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
58 schema:name Pure Mathematics
59 rdf:type schema:DefinedTerm
60 sg:journal.1136856 schema:issn 1025-5834
61 1029-242X
62 schema:name Journal of Inequalities and Applications
63 rdf:type schema:Periodical
64 sg:person.012302163601.99 schema:affiliation https://www.grid.ac/institutes/grid.440716.0
65 schema:familyName Yang
66 schema:givenName Bicheng
67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012302163601.99
68 rdf:type schema:Person
69 sg:person.012677707255.87 schema:affiliation https://www.grid.ac/institutes/grid.440716.0
70 schema:familyName Wang
71 schema:givenName Aizhen
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012677707255.87
73 rdf:type schema:Person
74 sg:pub.10.1007/978-94-011-3562-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001459262
75 https://doi.org/10.1007/978-94-011-3562-7
76 rdf:type schema:CreativeWork
77 sg:pub.10.1155/2007/47812 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053603993
78 https://doi.org/10.1155/2007/47812
79 rdf:type schema:CreativeWork
80 sg:pub.10.1186/1029-242x-2012-70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007709146
81 https://doi.org/10.1186/1029-242x-2012-70
82 rdf:type schema:CreativeWork
83 https://app.dimensions.ai/details/publication/pub.1001459262 schema:CreativeWork
84 https://doi.org/10.1006/jmaa.1998.6043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049644219
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1006/jmaa.2000.6766 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025818937
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1090/s0002-9939-98-04444-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1030007043
89 rdf:type schema:CreativeWork
90 https://doi.org/10.15352/afa/1399900031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067741984
91 rdf:type schema:CreativeWork
92 https://www.grid.ac/institutes/grid.440716.0 schema:alternateName Guangdong Institute of Education
93 schema:name Department of Mathematics, Guangdong University of Education, 510303, Guangzhou, Guangdong, P.R. China
94 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...