A new evaluation function for face image enhancement in unconstrained environments using metaheuristic algorithms View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Muhtahir Oloyede, Gerhard Hancke, Hermanus Myburgh, Adeiza Onumanyi

ABSTRACT

Image enhancement is an integral component of face recognition systems and other image processing tasks such as in medical and satellite imaging. Among a number of existing image enhancement methods, metaheuristic-based approaches have gained popularity owing to their highly effective performance rates. However, the need for improved evaluation functions is a major research concern in the study of metaheuristic-based image enhancement methods. Thus, in this paper, we present a new evaluation function for improving the performance of metaheuristic-based image enhancement methods. Essentially, we applied our new evaluation function in conjunction with metaheuristic-based optimization algorithms in order to select automatically the best enhanced face image based on a linear combination of different key quantitative measures. Furthermore, different from other existing evaluation functions, our evaluation function is finitely bounded to determine easily whether an image is either too dark or too bright. This makes it better suited to find optimal solutions (best enhanced images) during the search process. Our method was compared with existing metaheuristic-based methods and other state-of-the-art image enhancement techniques. Based on the qualitative and quantitative measures obtained, our approach is shown to enhance facial images in unconstrained environments significantly. More... »

PAGES

27

References to SciGraph publications

  • 2018-12. Nighttime low illumination image enhancement with single image using bright/dark channel prior in EURASIP JOURNAL ON IMAGE AND VIDEO PROCESSING
  • 2018-12. Restoration of online video ferrography images for out-of-focus degradations in EURASIP JOURNAL ON IMAGE AND VIDEO PROCESSING
  • 2016-12. An adaptive gamma correction for image enhancement in EURASIP JOURNAL ON IMAGE AND VIDEO PROCESSING
  • 2014-12. Using weighted dynamic range for histogram equalization to improve the image contrast in EURASIP JOURNAL ON IMAGE AND VIDEO PROCESSING
  • 2017-12. A framework of human detection and action recognition based on uniform segmentation and combination of Euclidean distance and joint entropy-based features selection in EURASIP JOURNAL ON IMAGE AND VIDEO PROCESSING
  • 2017-10. Cuckoo search with search strategies and proper objective function for brightness preserving image enhancement in PATTERN RECOGNITION AND IMAGE ANALYSIS
  • 2018-01. A comprehensive study of cuckoo-inspired algorithms in NEURAL COMPUTING AND APPLICATIONS
  • 2017-12. Relationship between entropy and SNR changes in image enhancement in EURASIP JOURNAL ON IMAGE AND VIDEO PROCESSING
  • 2018-12. A histogram specification technique for dark image enhancement using a local transformation method in IPSJ TRANSACTIONS ON COMPUTER VISION AND APPLICATIONS
  • 2017-11. Illumination-insensitive features for face recognition in THE VISUAL COMPUTER
  • 2017-11. Towards nonuniform illumination face enhancement via adaptive contrast stretching in MULTIMEDIA TOOLS AND APPLICATIONS
  • 2017-07. Bi-histogram equalization using two plateau limits in SIGNAL, IMAGE AND VIDEO PROCESSING
  • 2017-04. A new beta differential evolution algorithm for edge preserved colored satellite image enhancement in MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING
  • 2014-11. Adaptive fuzzy contrast factor enhancement technique for low contrast and nonuniform illumination images in SIGNAL, IMAGE AND VIDEO PROCESSING
  • 2018-07. Occlusion detection and restoration techniques for 3D face recognition: a literature review in MACHINE VISION AND APPLICATIONS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s13640-019-0418-7

    DOI

    http://dx.doi.org/10.1186/s13640-019-0418-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1111780292


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Pretoria", 
              "id": "https://www.grid.ac/institutes/grid.49697.35", 
              "name": [
                "Department of Electrical Electronic and Computer Engineering, University of Pretoria, 0002, Pretoria, SA, South Africa"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Oloyede", 
            "givenName": "Muhtahir", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Pretoria", 
              "id": "https://www.grid.ac/institutes/grid.49697.35", 
              "name": [
                "Department of Electrical Electronic and Computer Engineering, University of Pretoria, 0002, Pretoria, SA, South Africa"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hancke", 
            "givenName": "Gerhard", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Pretoria", 
              "id": "https://www.grid.ac/institutes/grid.49697.35", 
              "name": [
                "Department of Electrical Electronic and Computer Engineering, University of Pretoria, 0002, Pretoria, SA, South Africa"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Myburgh", 
            "givenName": "Hermanus", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Pretoria", 
              "id": "https://www.grid.ac/institutes/grid.49697.35", 
              "name": [
                "Department of Electrical Electronic and Computer Engineering, University of Pretoria, 0002, Pretoria, SA, South Africa"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Onumanyi", 
            "givenName": "Adeiza", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11760-012-0398-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008545459", 
              "https://doi.org/10.1007/s11760-012-0398-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0165-1684(98)00123-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010524390"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1687-5281-2014-44", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014058801", 
              "https://doi.org/10.1186/1687-5281-2014-44"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11045-015-0353-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014081319", 
              "https://doi.org/10.1007/s11045-015-0353-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00521-016-2464-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026090551", 
              "https://doi.org/10.1007/s00521-016-2464-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00521-016-2464-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026090551", 
              "https://doi.org/10.1007/s00521-016-2464-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/access.2016.2614720", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039536332"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13640-016-0138-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044082145", 
              "https://doi.org/10.1186/s13640-016-0138-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13640-016-0138-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044082145", 
              "https://doi.org/10.1186/s13640-016-0138-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11760-016-1032-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044991995", 
              "https://doi.org/10.1007/s11760-016-1032-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11760-016-1032-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044991995", 
              "https://doi.org/10.1007/s11760-016-1032-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1155/2015/825398", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045205494"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.patrec.2013.08.024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046814359"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tsmcb.2003.818533", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061796254"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.asoc.2017.01.053", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083412838"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00371-017-1357-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084021146", 
              "https://doi.org/10.1007/s00371-017-1357-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00371-017-1357-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084021146", 
              "https://doi.org/10.1007/s00371-017-1357-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11042-017-4665-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084519068", 
              "https://doi.org/10.1007/s11042-017-4665-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11042-017-4665-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084519068", 
              "https://doi.org/10.1007/s11042-017-4665-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.asoc.2017.08.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091220729"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13640-017-0232-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099699319", 
              "https://doi.org/10.1186/s13640-017-0232-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1054661817040046", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099700490", 
              "https://doi.org/10.1134/s1054661817040046"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1155/2017/6029892", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099709043"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13640-017-0236-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099723190", 
              "https://doi.org/10.1186/s13640-017-0236-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.patrec.2018.01.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100426431"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s41074-018-0040-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100990409", 
              "https://doi.org/10.1186/s41074-018-0040-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13640-018-0251-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101040427", 
              "https://doi.org/10.1186/s13640-018-0251-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.asoc.2018.03.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101363137"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.asoc.2018.03.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101363137"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmmm.2018.02.094", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101405215"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00138-018-0933-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103676411", 
              "https://doi.org/10.1007/s00138-018-0933-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00138-018-0933-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103676411", 
              "https://doi.org/10.1007/s00138-018-0933-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13640-018-0270-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103917386", 
              "https://doi.org/10.1186/s13640-018-0270-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13640-018-0270-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103917386", 
              "https://doi.org/10.1186/s13640-018-0270-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iwbf.2018.8401564", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105262403"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-12", 
        "datePublishedReg": "2019-12-01", 
        "description": "Image enhancement is an integral component of face recognition systems and other image processing tasks such as in medical and satellite imaging. Among a number of existing image enhancement methods, metaheuristic-based approaches have gained popularity owing to their highly effective performance rates. However, the need for improved evaluation functions is a major research concern in the study of metaheuristic-based image enhancement methods. Thus, in this paper, we present a new evaluation function for improving the performance of metaheuristic-based image enhancement methods. Essentially, we applied our new evaluation function in conjunction with metaheuristic-based optimization algorithms in order to select automatically the best enhanced face image based on a linear combination of different key quantitative measures. Furthermore, different from other existing evaluation functions, our evaluation function is finitely bounded to determine easily whether an image is either too dark or too bright. This makes it better suited to find optimal solutions (best enhanced images) during the search process. Our method was compared with existing metaheuristic-based methods and other state-of-the-art image enhancement techniques. Based on the qualitative and quantitative measures obtained, our approach is shown to enhance facial images in unconstrained environments significantly.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/s13640-019-0418-7", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1038561", 
            "issn": [
              "1687-5176", 
              "1687-5281"
            ], 
            "name": "EURASIP Journal on Image and Video Processing", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2019"
          }
        ], 
        "name": "A new evaluation function for face image enhancement in unconstrained environments using metaheuristic algorithms", 
        "pagination": "27", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "f12ae01921a05882205c8741524bbc1ba5a8f5e8523084a948b3f56f2ff514ed"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s13640-019-0418-7"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1111780292"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s13640-019-0418-7", 
          "https://app.dimensions.ai/details/publication/pub.1111780292"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T08:58", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000326_0000000326/records_68463_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1186%2Fs13640-019-0418-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13640-019-0418-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13640-019-0418-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13640-019-0418-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13640-019-0418-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    174 TRIPLES      21 PREDICATES      54 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s13640-019-0418-7 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N9a23fe8f1f704496aa7debdcda0d63ff
    4 schema:citation sg:pub.10.1007/s00138-018-0933-z
    5 sg:pub.10.1007/s00371-017-1357-x
    6 sg:pub.10.1007/s00521-016-2464-8
    7 sg:pub.10.1007/s11042-017-4665-2
    8 sg:pub.10.1007/s11045-015-0353-4
    9 sg:pub.10.1007/s11760-012-0398-x
    10 sg:pub.10.1007/s11760-016-1032-0
    11 sg:pub.10.1134/s1054661817040046
    12 sg:pub.10.1186/1687-5281-2014-44
    13 sg:pub.10.1186/s13640-016-0138-1
    14 sg:pub.10.1186/s13640-017-0232-z
    15 sg:pub.10.1186/s13640-017-0236-8
    16 sg:pub.10.1186/s13640-018-0251-4
    17 sg:pub.10.1186/s13640-018-0270-1
    18 sg:pub.10.1186/s41074-018-0040-0
    19 https://doi.org/10.1016/j.asoc.2017.01.053
    20 https://doi.org/10.1016/j.asoc.2017.08.019
    21 https://doi.org/10.1016/j.asoc.2018.03.004
    22 https://doi.org/10.1016/j.jmmm.2018.02.094
    23 https://doi.org/10.1016/j.patrec.2013.08.024
    24 https://doi.org/10.1016/j.patrec.2018.01.010
    25 https://doi.org/10.1016/s0165-1684(98)00123-6
    26 https://doi.org/10.1109/access.2016.2614720
    27 https://doi.org/10.1109/iwbf.2018.8401564
    28 https://doi.org/10.1109/tsmcb.2003.818533
    29 https://doi.org/10.1155/2015/825398
    30 https://doi.org/10.1155/2017/6029892
    31 schema:datePublished 2019-12
    32 schema:datePublishedReg 2019-12-01
    33 schema:description Image enhancement is an integral component of face recognition systems and other image processing tasks such as in medical and satellite imaging. Among a number of existing image enhancement methods, metaheuristic-based approaches have gained popularity owing to their highly effective performance rates. However, the need for improved evaluation functions is a major research concern in the study of metaheuristic-based image enhancement methods. Thus, in this paper, we present a new evaluation function for improving the performance of metaheuristic-based image enhancement methods. Essentially, we applied our new evaluation function in conjunction with metaheuristic-based optimization algorithms in order to select automatically the best enhanced face image based on a linear combination of different key quantitative measures. Furthermore, different from other existing evaluation functions, our evaluation function is finitely bounded to determine easily whether an image is either too dark or too bright. This makes it better suited to find optimal solutions (best enhanced images) during the search process. Our method was compared with existing metaheuristic-based methods and other state-of-the-art image enhancement techniques. Based on the qualitative and quantitative measures obtained, our approach is shown to enhance facial images in unconstrained environments significantly.
    34 schema:genre research_article
    35 schema:inLanguage en
    36 schema:isAccessibleForFree true
    37 schema:isPartOf N5835930edced4446b1138a933b67a73a
    38 N8ca9c8b1cf0d48dbbcb4d30eaa2ef48f
    39 sg:journal.1038561
    40 schema:name A new evaluation function for face image enhancement in unconstrained environments using metaheuristic algorithms
    41 schema:pagination 27
    42 schema:productId N77ef96653b684c8e94ad435d78f2d242
    43 Nbdeb8764b0c14ee0a806ec4e19edfbe2
    44 Nc7ad18c11ce94f339be5fbc2cd05e7c8
    45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111780292
    46 https://doi.org/10.1186/s13640-019-0418-7
    47 schema:sdDatePublished 2019-04-11T08:58
    48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    49 schema:sdPublisher Ndbba1f10badc4e349bdd57fb485ac3cf
    50 schema:url https://link.springer.com/10.1186%2Fs13640-019-0418-7
    51 sgo:license sg:explorer/license/
    52 sgo:sdDataset articles
    53 rdf:type schema:ScholarlyArticle
    54 N1b6dcf69656b4968b21c495cb922807b schema:affiliation https://www.grid.ac/institutes/grid.49697.35
    55 schema:familyName Myburgh
    56 schema:givenName Hermanus
    57 rdf:type schema:Person
    58 N1ed0a6f72b9f4707887ae38ce549a1e4 schema:affiliation https://www.grid.ac/institutes/grid.49697.35
    59 schema:familyName Hancke
    60 schema:givenName Gerhard
    61 rdf:type schema:Person
    62 N26e7bfd022d74eaa9680a42d2485f3f6 rdf:first N1b6dcf69656b4968b21c495cb922807b
    63 rdf:rest Nc6fa09670c8745a6a033f366d1275b92
    64 N3f656ef08803409e852d013571013708 rdf:first N1ed0a6f72b9f4707887ae38ce549a1e4
    65 rdf:rest N26e7bfd022d74eaa9680a42d2485f3f6
    66 N5835930edced4446b1138a933b67a73a schema:volumeNumber 2019
    67 rdf:type schema:PublicationVolume
    68 N5fe4abdbf1b64729841a867cf32cf244 schema:affiliation https://www.grid.ac/institutes/grid.49697.35
    69 schema:familyName Oloyede
    70 schema:givenName Muhtahir
    71 rdf:type schema:Person
    72 N77ef96653b684c8e94ad435d78f2d242 schema:name dimensions_id
    73 schema:value pub.1111780292
    74 rdf:type schema:PropertyValue
    75 N8ca9c8b1cf0d48dbbcb4d30eaa2ef48f schema:issueNumber 1
    76 rdf:type schema:PublicationIssue
    77 N9a23fe8f1f704496aa7debdcda0d63ff rdf:first N5fe4abdbf1b64729841a867cf32cf244
    78 rdf:rest N3f656ef08803409e852d013571013708
    79 Nbdeb8764b0c14ee0a806ec4e19edfbe2 schema:name doi
    80 schema:value 10.1186/s13640-019-0418-7
    81 rdf:type schema:PropertyValue
    82 Nc6fa09670c8745a6a033f366d1275b92 rdf:first Ne322e034526a46e3b0f985ecb66eda26
    83 rdf:rest rdf:nil
    84 Nc7ad18c11ce94f339be5fbc2cd05e7c8 schema:name readcube_id
    85 schema:value f12ae01921a05882205c8741524bbc1ba5a8f5e8523084a948b3f56f2ff514ed
    86 rdf:type schema:PropertyValue
    87 Ndbba1f10badc4e349bdd57fb485ac3cf schema:name Springer Nature - SN SciGraph project
    88 rdf:type schema:Organization
    89 Ne322e034526a46e3b0f985ecb66eda26 schema:affiliation https://www.grid.ac/institutes/grid.49697.35
    90 schema:familyName Onumanyi
    91 schema:givenName Adeiza
    92 rdf:type schema:Person
    93 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    94 schema:name Information and Computing Sciences
    95 rdf:type schema:DefinedTerm
    96 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    97 schema:name Artificial Intelligence and Image Processing
    98 rdf:type schema:DefinedTerm
    99 sg:journal.1038561 schema:issn 1687-5176
    100 1687-5281
    101 schema:name EURASIP Journal on Image and Video Processing
    102 rdf:type schema:Periodical
    103 sg:pub.10.1007/s00138-018-0933-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1103676411
    104 https://doi.org/10.1007/s00138-018-0933-z
    105 rdf:type schema:CreativeWork
    106 sg:pub.10.1007/s00371-017-1357-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1084021146
    107 https://doi.org/10.1007/s00371-017-1357-x
    108 rdf:type schema:CreativeWork
    109 sg:pub.10.1007/s00521-016-2464-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026090551
    110 https://doi.org/10.1007/s00521-016-2464-8
    111 rdf:type schema:CreativeWork
    112 sg:pub.10.1007/s11042-017-4665-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084519068
    113 https://doi.org/10.1007/s11042-017-4665-2
    114 rdf:type schema:CreativeWork
    115 sg:pub.10.1007/s11045-015-0353-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014081319
    116 https://doi.org/10.1007/s11045-015-0353-4
    117 rdf:type schema:CreativeWork
    118 sg:pub.10.1007/s11760-012-0398-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1008545459
    119 https://doi.org/10.1007/s11760-012-0398-x
    120 rdf:type schema:CreativeWork
    121 sg:pub.10.1007/s11760-016-1032-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044991995
    122 https://doi.org/10.1007/s11760-016-1032-0
    123 rdf:type schema:CreativeWork
    124 sg:pub.10.1134/s1054661817040046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099700490
    125 https://doi.org/10.1134/s1054661817040046
    126 rdf:type schema:CreativeWork
    127 sg:pub.10.1186/1687-5281-2014-44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014058801
    128 https://doi.org/10.1186/1687-5281-2014-44
    129 rdf:type schema:CreativeWork
    130 sg:pub.10.1186/s13640-016-0138-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044082145
    131 https://doi.org/10.1186/s13640-016-0138-1
    132 rdf:type schema:CreativeWork
    133 sg:pub.10.1186/s13640-017-0232-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1099699319
    134 https://doi.org/10.1186/s13640-017-0232-z
    135 rdf:type schema:CreativeWork
    136 sg:pub.10.1186/s13640-017-0236-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099723190
    137 https://doi.org/10.1186/s13640-017-0236-8
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1186/s13640-018-0251-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101040427
    140 https://doi.org/10.1186/s13640-018-0251-4
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1186/s13640-018-0270-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103917386
    143 https://doi.org/10.1186/s13640-018-0270-1
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1186/s41074-018-0040-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100990409
    146 https://doi.org/10.1186/s41074-018-0040-0
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1016/j.asoc.2017.01.053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083412838
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1016/j.asoc.2017.08.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091220729
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1016/j.asoc.2018.03.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101363137
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1016/j.jmmm.2018.02.094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101405215
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1016/j.patrec.2013.08.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046814359
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1016/j.patrec.2018.01.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100426431
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1016/s0165-1684(98)00123-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010524390
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1109/access.2016.2614720 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039536332
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1109/iwbf.2018.8401564 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105262403
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1109/tsmcb.2003.818533 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061796254
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1155/2015/825398 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045205494
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1155/2017/6029892 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099709043
    171 rdf:type schema:CreativeWork
    172 https://www.grid.ac/institutes/grid.49697.35 schema:alternateName University of Pretoria
    173 schema:name Department of Electrical Electronic and Computer Engineering, University of Pretoria, 0002, Pretoria, SA, South Africa
    174 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...