Adaptive image enhancement algorithm based on the model of surface roughness detection system View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Jie Tian, Xijie Yin

ABSTRACT

In view of the relatively high noise interference and halo phenomenon of the traditional adaptive image enhancement algorithm based on the unsharp masking method, a kind of adaptive image enhancement algorithm based on the integration of the model of surface roughness detection system (hereinafter referred to as MSRDS for short) is put forward in this paper. Through the design of the model of the surface roughness detection system, non-linear segmentation, denoising, and adaptive amplification are carried out on the details of the image under this system model. The dynamic range compressed image base layer and the adaptively enhanced image detail layer are non-linearly superimposed to obtain the final enhanced image. Finally, through the comparative experiment analysis, it demonstrates that the method put forward in this paper can suppress the interference noise and the halo phenomenon of the image very well while carrying out dynamic range compression and detail amplification of the adaptive image effectively. And the result thus obtained is very suitable for the back-end image processing of the actual thermal infrared imager. More... »

PAGES

103

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13640-018-0343-1

DOI

http://dx.doi.org/10.1186/s13640-018-0343-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107561357


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Shandong Women\u2019s University", 
          "id": "https://www.grid.ac/institutes/grid.495262.e", 
          "name": [
            "School of Data and Computer Science, Shandong Women\u2019s University, 250300, Jinan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tian", 
        "givenName": "Jie", 
        "id": "sg:person.016571265644.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016571265644.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shandong Women\u2019s University", 
          "id": "https://www.grid.ac/institutes/grid.495262.e", 
          "name": [
            "School of Data and Computer Science, Shandong Women\u2019s University, 250300, Jinan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yin", 
        "givenName": "Xijie", 
        "id": "sg:person.014243102754.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014243102754.29"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s12021-014-9249-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010933103", 
          "https://doi.org/10.1007/s12021-014-9249-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.polymertesting.2016.05.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012240696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compeleceng.2014.05.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019497577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compeleceng.2015.02.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021082096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3189/2014jog14j032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022443025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.infrared.2014.05.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025505267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmachtools.2013.02.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028001130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.infrared.2014.09.042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029907004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03772063.2015.1009397", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030544631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patrec.2014.09.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040359546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0043-1648(91)90285-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045727323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0043-1648(91)90285-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045727323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2016.03.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047885171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.idairyj.2012.02.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049136947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.idairyj.2012.02.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049136947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apsusc.2015.10.070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052160053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-cvi.2013.0011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056825257"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-ipr.2014.0580", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056829361"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.353366", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057969526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ao.54.005686", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065132235"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "In view of the relatively high noise interference and halo phenomenon of the traditional adaptive image enhancement algorithm based on the unsharp masking method, a kind of adaptive image enhancement algorithm based on the integration of the model of surface roughness detection system (hereinafter referred to as MSRDS for short) is put forward in this paper. Through the design of the model of the surface roughness detection system, non-linear segmentation, denoising, and adaptive amplification are carried out on the details of the image under this system model. The dynamic range compressed image base layer and the adaptively enhanced image detail layer are non-linearly superimposed to obtain the final enhanced image. Finally, through the comparative experiment analysis, it demonstrates that the method put forward in this paper can suppress the interference noise and the halo phenomenon of the image very well while carrying out dynamic range compression and detail amplification of the adaptive image effectively. And the result thus obtained is very suitable for the back-end image processing of the actual thermal infrared imager.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s13640-018-0343-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1038561", 
        "issn": [
          "1687-5176", 
          "1687-5281"
        ], 
        "name": "EURASIP Journal on Image and Video Processing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2018"
      }
    ], 
    "name": "Adaptive image enhancement algorithm based on the model of surface roughness detection system", 
    "pagination": "103", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9e8d7416d6cb08c2f57846f98156a7cc3eba9433812cb05b79033660553cbc97"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13640-018-0343-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107561357"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13640-018-0343-1", 
      "https://app.dimensions.ai/details/publication/pub.1107561357"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000560.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs13640-018-0343-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13640-018-0343-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13640-018-0343-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13640-018-0343-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13640-018-0343-1'


 

This table displays all metadata directly associated to this object as RDF triples.

123 TRIPLES      21 PREDICATES      45 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13640-018-0343-1 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N68a6aad2d9c04b1f8b6014ee7a579ba1
4 schema:citation sg:pub.10.1007/s12021-014-9249-y
5 https://doi.org/10.1016/0043-1648(91)90285-3
6 https://doi.org/10.1016/j.apsusc.2015.10.070
7 https://doi.org/10.1016/j.compeleceng.2014.05.017
8 https://doi.org/10.1016/j.compeleceng.2015.02.013
9 https://doi.org/10.1016/j.idairyj.2012.02.005
10 https://doi.org/10.1016/j.ijmachtools.2013.02.006
11 https://doi.org/10.1016/j.infrared.2014.05.018
12 https://doi.org/10.1016/j.infrared.2014.09.042
13 https://doi.org/10.1016/j.patcog.2016.03.021
14 https://doi.org/10.1016/j.patrec.2014.09.011
15 https://doi.org/10.1016/j.polymertesting.2016.05.022
16 https://doi.org/10.1049/iet-cvi.2013.0011
17 https://doi.org/10.1049/iet-ipr.2014.0580
18 https://doi.org/10.1063/1.353366
19 https://doi.org/10.1080/03772063.2015.1009397
20 https://doi.org/10.1364/ao.54.005686
21 https://doi.org/10.3189/2014jog14j032
22 schema:datePublished 2018-12
23 schema:datePublishedReg 2018-12-01
24 schema:description In view of the relatively high noise interference and halo phenomenon of the traditional adaptive image enhancement algorithm based on the unsharp masking method, a kind of adaptive image enhancement algorithm based on the integration of the model of surface roughness detection system (hereinafter referred to as MSRDS for short) is put forward in this paper. Through the design of the model of the surface roughness detection system, non-linear segmentation, denoising, and adaptive amplification are carried out on the details of the image under this system model. The dynamic range compressed image base layer and the adaptively enhanced image detail layer are non-linearly superimposed to obtain the final enhanced image. Finally, through the comparative experiment analysis, it demonstrates that the method put forward in this paper can suppress the interference noise and the halo phenomenon of the image very well while carrying out dynamic range compression and detail amplification of the adaptive image effectively. And the result thus obtained is very suitable for the back-end image processing of the actual thermal infrared imager.
25 schema:genre research_article
26 schema:inLanguage en
27 schema:isAccessibleForFree true
28 schema:isPartOf N982c32248c384a8f91fa5feff57f8d76
29 Ndad3ae108dd641c79807721b1db714cd
30 sg:journal.1038561
31 schema:name Adaptive image enhancement algorithm based on the model of surface roughness detection system
32 schema:pagination 103
33 schema:productId N193a2058da4b4670ba9cd8cc719dc6ec
34 N6508bc0128d04c9d8df52bcd312577a7
35 Nffd3a47763a9475da503a662f6985e2a
36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107561357
37 https://doi.org/10.1186/s13640-018-0343-1
38 schema:sdDatePublished 2019-04-10T23:33
39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
40 schema:sdPublisher N13ecca2cedb4481a9d867ae537050f2d
41 schema:url https://link.springer.com/10.1186%2Fs13640-018-0343-1
42 sgo:license sg:explorer/license/
43 sgo:sdDataset articles
44 rdf:type schema:ScholarlyArticle
45 N13ecca2cedb4481a9d867ae537050f2d schema:name Springer Nature - SN SciGraph project
46 rdf:type schema:Organization
47 N193a2058da4b4670ba9cd8cc719dc6ec schema:name dimensions_id
48 schema:value pub.1107561357
49 rdf:type schema:PropertyValue
50 N6508bc0128d04c9d8df52bcd312577a7 schema:name readcube_id
51 schema:value 9e8d7416d6cb08c2f57846f98156a7cc3eba9433812cb05b79033660553cbc97
52 rdf:type schema:PropertyValue
53 N68a6aad2d9c04b1f8b6014ee7a579ba1 rdf:first sg:person.016571265644.47
54 rdf:rest N82ef5eadacb64a03951f22c4f7ac8452
55 N82ef5eadacb64a03951f22c4f7ac8452 rdf:first sg:person.014243102754.29
56 rdf:rest rdf:nil
57 N982c32248c384a8f91fa5feff57f8d76 schema:issueNumber 1
58 rdf:type schema:PublicationIssue
59 Ndad3ae108dd641c79807721b1db714cd schema:volumeNumber 2018
60 rdf:type schema:PublicationVolume
61 Nffd3a47763a9475da503a662f6985e2a schema:name doi
62 schema:value 10.1186/s13640-018-0343-1
63 rdf:type schema:PropertyValue
64 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
65 schema:name Information and Computing Sciences
66 rdf:type schema:DefinedTerm
67 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
68 schema:name Artificial Intelligence and Image Processing
69 rdf:type schema:DefinedTerm
70 sg:journal.1038561 schema:issn 1687-5176
71 1687-5281
72 schema:name EURASIP Journal on Image and Video Processing
73 rdf:type schema:Periodical
74 sg:person.014243102754.29 schema:affiliation https://www.grid.ac/institutes/grid.495262.e
75 schema:familyName Yin
76 schema:givenName Xijie
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014243102754.29
78 rdf:type schema:Person
79 sg:person.016571265644.47 schema:affiliation https://www.grid.ac/institutes/grid.495262.e
80 schema:familyName Tian
81 schema:givenName Jie
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016571265644.47
83 rdf:type schema:Person
84 sg:pub.10.1007/s12021-014-9249-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1010933103
85 https://doi.org/10.1007/s12021-014-9249-y
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1016/0043-1648(91)90285-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045727323
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1016/j.apsusc.2015.10.070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052160053
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1016/j.compeleceng.2014.05.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019497577
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1016/j.compeleceng.2015.02.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021082096
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/j.idairyj.2012.02.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049136947
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/j.ijmachtools.2013.02.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028001130
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/j.infrared.2014.05.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025505267
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/j.infrared.2014.09.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029907004
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/j.patcog.2016.03.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047885171
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/j.patrec.2014.09.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040359546
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/j.polymertesting.2016.05.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012240696
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1049/iet-cvi.2013.0011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056825257
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1049/iet-ipr.2014.0580 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056829361
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1063/1.353366 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057969526
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1080/03772063.2015.1009397 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030544631
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1364/ao.54.005686 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065132235
118 rdf:type schema:CreativeWork
119 https://doi.org/10.3189/2014jog14j032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022443025
120 rdf:type schema:CreativeWork
121 https://www.grid.ac/institutes/grid.495262.e schema:alternateName Shandong Women’s University
122 schema:name School of Data and Computer Science, Shandong Women’s University, 250300, Jinan, China
123 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...