Fast inter-prediction algorithm based on motion vector information for high efficiency video coding View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Kao-Min Lin, Jie-Ru Lin, Mei-Juan Chen, Chia-Hung Yeh, Cheng-An Lee

ABSTRACT

High Efficiency Video Coding (HEVC/H.265) is the latest international video coding standard, which achieves better compression ratio and supports higher resolution than Advanced Video Coding (H.264/AVC). However, HEVC/H.265 increases the computational burden. To reduce the coding complexity of the HEVC encoder, this paper proposes a fast inter-prediction algorithm to speed up coding time. We collect the average rate-distortion costs (RD-cost) of Skip modes and Merge modes to accelerate prediction unit (PU) mode decisions. In addition, we also acquire and analyze the motion vector range from Merge modes and Inter 2N × 2N modes to decide whether to execute Merge and advanced motion vector prediction (AMVP) of other PUs. The experimental results show that the proposed algorithm provides 48.54% time saving on average in random-access configuration and maintains good rate-distortion performance and video quality at the same time. The proposed algorithm also outperforms previous works. More... »

PAGES

99

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13640-018-0340-4

DOI

http://dx.doi.org/10.1186/s13640-018-0340-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107342692


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Dong Hwa University", 
          "id": "https://www.grid.ac/institutes/grid.260567.0", 
          "name": [
            "Department of Electrical Engineering, National Dong Hwa University, Hualien, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lin", 
        "givenName": "Kao-Min", 
        "id": "sg:person.010362630004.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010362630004.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Dong Hwa University", 
          "id": "https://www.grid.ac/institutes/grid.260567.0", 
          "name": [
            "Department of Electrical Engineering, National Dong Hwa University, Hualien, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lin", 
        "givenName": "Jie-Ru", 
        "id": "sg:person.015742036201.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015742036201.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Dong Hwa University", 
          "id": "https://www.grid.ac/institutes/grid.260567.0", 
          "name": [
            "Department of Electrical Engineering, National Dong Hwa University, Hualien, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Mei-Juan", 
        "id": "sg:person.011274470065.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011274470065.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Sun Yat-sen University", 
          "id": "https://www.grid.ac/institutes/grid.412036.2", 
          "name": [
            "Department of Electrical Engineering, National Taiwan Normal University, Taipei, Taiwan", 
            "Department of Electrical Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yeh", 
        "givenName": "Chia-Hung", 
        "id": "sg:person.07753245671.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07753245671.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Dong Hwa University", 
          "id": "https://www.grid.ac/institutes/grid.260567.0", 
          "name": [
            "Department of Electrical Engineering, National Dong Hwa University, Hualien, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Cheng-An", 
        "id": "sg:person.012601364054.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012601364054.50"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1687-5281-2013-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023531200", 
          "https://doi.org/10.1186/1687-5281-2013-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/el.2014.0451", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056755096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/el.2015.3094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056757036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jstsp.2013.2271975", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061338299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbc.2014.2321682", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061522372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbc.2015.2505406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061522489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcsvt.2003.815165", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061574449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcsvt.2012.2221191", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061576017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcsvt.2012.2223051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061576033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcsvt.2014.2313892", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061576295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcsvt.2014.2360031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061576396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1587/transfun.e95.a.1215", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068090510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13640-016-0159-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074198548", 
          "https://doi.org/10.1186/s13640-016-0159-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13640-016-0159-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074198548", 
          "https://doi.org/10.1186/s13640-016-0159-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbc.2017.2722239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090973104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13640-017-0226-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092819400", 
          "https://doi.org/10.1186/s13640-017-0226-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ist.2015.7294566", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094505255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/apsipa.2014.7041657", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094899675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icce-tw.2015.7216916", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095291706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ivmspw.2013.6611927", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095732644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13640-017-0237-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099680932", 
          "https://doi.org/10.1186/s13640-017-0237-7"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "High Efficiency Video Coding (HEVC/H.265) is the latest international video coding standard, which achieves better compression ratio and supports higher resolution than Advanced Video Coding (H.264/AVC). However, HEVC/H.265 increases the computational burden. To reduce the coding complexity of the HEVC encoder, this paper proposes a fast inter-prediction algorithm to speed up coding time. We collect the average rate-distortion costs (RD-cost) of Skip modes and Merge modes to accelerate prediction unit (PU) mode decisions. In addition, we also acquire and analyze the motion vector range from Merge modes and Inter 2N \u00d7 2N modes to decide whether to execute Merge and advanced motion vector prediction (AMVP) of other PUs. The experimental results show that the proposed algorithm provides 48.54% time saving on average in random-access configuration and maintains good rate-distortion performance and video quality at the same time. The proposed algorithm also outperforms previous works.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s13640-018-0340-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1038561", 
        "issn": [
          "1687-5176", 
          "1687-5281"
        ], 
        "name": "EURASIP Journal on Image and Video Processing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2018"
      }
    ], 
    "name": "Fast inter-prediction algorithm based on motion vector information for high efficiency video coding", 
    "pagination": "99", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "842879dd0fa3ad0be7589ce24daa0719d9ff2f2892bb2d45fad3b53b5ec32c2e"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13640-018-0340-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107342692"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13640-018-0340-4", 
      "https://app.dimensions.ai/details/publication/pub.1107342692"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000544.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs13640-018-0340-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13640-018-0340-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13640-018-0340-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13640-018-0340-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13640-018-0340-4'


 

This table displays all metadata directly associated to this object as RDF triples.

157 TRIPLES      21 PREDICATES      47 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13640-018-0340-4 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nb7f01b1cf16f4206977629d308d23c63
4 schema:citation sg:pub.10.1186/1687-5281-2013-4
5 sg:pub.10.1186/s13640-016-0159-9
6 sg:pub.10.1186/s13640-017-0226-x
7 sg:pub.10.1186/s13640-017-0237-7
8 https://doi.org/10.1049/el.2014.0451
9 https://doi.org/10.1049/el.2015.3094
10 https://doi.org/10.1109/apsipa.2014.7041657
11 https://doi.org/10.1109/icce-tw.2015.7216916
12 https://doi.org/10.1109/ist.2015.7294566
13 https://doi.org/10.1109/ivmspw.2013.6611927
14 https://doi.org/10.1109/jstsp.2013.2271975
15 https://doi.org/10.1109/tbc.2014.2321682
16 https://doi.org/10.1109/tbc.2015.2505406
17 https://doi.org/10.1109/tbc.2017.2722239
18 https://doi.org/10.1109/tcsvt.2003.815165
19 https://doi.org/10.1109/tcsvt.2012.2221191
20 https://doi.org/10.1109/tcsvt.2012.2223051
21 https://doi.org/10.1109/tcsvt.2014.2313892
22 https://doi.org/10.1109/tcsvt.2014.2360031
23 https://doi.org/10.1587/transfun.e95.a.1215
24 schema:datePublished 2018-12
25 schema:datePublishedReg 2018-12-01
26 schema:description High Efficiency Video Coding (HEVC/H.265) is the latest international video coding standard, which achieves better compression ratio and supports higher resolution than Advanced Video Coding (H.264/AVC). However, HEVC/H.265 increases the computational burden. To reduce the coding complexity of the HEVC encoder, this paper proposes a fast inter-prediction algorithm to speed up coding time. We collect the average rate-distortion costs (RD-cost) of Skip modes and Merge modes to accelerate prediction unit (PU) mode decisions. In addition, we also acquire and analyze the motion vector range from Merge modes and Inter 2N × 2N modes to decide whether to execute Merge and advanced motion vector prediction (AMVP) of other PUs. The experimental results show that the proposed algorithm provides 48.54% time saving on average in random-access configuration and maintains good rate-distortion performance and video quality at the same time. The proposed algorithm also outperforms previous works.
27 schema:genre research_article
28 schema:inLanguage en
29 schema:isAccessibleForFree true
30 schema:isPartOf Nedb3b8aa2d0047be8ddf36178eb487ee
31 Nf3bd3b9a4bc64a468192798cbfd12b16
32 sg:journal.1038561
33 schema:name Fast inter-prediction algorithm based on motion vector information for high efficiency video coding
34 schema:pagination 99
35 schema:productId N3313327f1b3743a78567483325e127dd
36 N82289656538849b2b0425b95e526d2ef
37 Nbd09f7298ea146b08abf928b557bfaee
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107342692
39 https://doi.org/10.1186/s13640-018-0340-4
40 schema:sdDatePublished 2019-04-10T20:03
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher Nc7ea551bcd2746c797afc20f5e4183bf
43 schema:url https://link.springer.com/10.1186%2Fs13640-018-0340-4
44 sgo:license sg:explorer/license/
45 sgo:sdDataset articles
46 rdf:type schema:ScholarlyArticle
47 N30f3b4e181234ff392ee79e853bfd5ad rdf:first sg:person.011274470065.56
48 rdf:rest Nbf6264f2c6b645308ddaff880a259e06
49 N3313327f1b3743a78567483325e127dd schema:name dimensions_id
50 schema:value pub.1107342692
51 rdf:type schema:PropertyValue
52 N743a5a466c344db0b1a0fc4df5cf4dd7 rdf:first sg:person.015742036201.49
53 rdf:rest N30f3b4e181234ff392ee79e853bfd5ad
54 N82289656538849b2b0425b95e526d2ef schema:name readcube_id
55 schema:value 842879dd0fa3ad0be7589ce24daa0719d9ff2f2892bb2d45fad3b53b5ec32c2e
56 rdf:type schema:PropertyValue
57 Na90955642a73459ab8d8f7e9dd69d5c3 rdf:first sg:person.012601364054.50
58 rdf:rest rdf:nil
59 Nb7f01b1cf16f4206977629d308d23c63 rdf:first sg:person.010362630004.59
60 rdf:rest N743a5a466c344db0b1a0fc4df5cf4dd7
61 Nbd09f7298ea146b08abf928b557bfaee schema:name doi
62 schema:value 10.1186/s13640-018-0340-4
63 rdf:type schema:PropertyValue
64 Nbf6264f2c6b645308ddaff880a259e06 rdf:first sg:person.07753245671.16
65 rdf:rest Na90955642a73459ab8d8f7e9dd69d5c3
66 Nc7ea551bcd2746c797afc20f5e4183bf schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 Nedb3b8aa2d0047be8ddf36178eb487ee schema:volumeNumber 2018
69 rdf:type schema:PublicationVolume
70 Nf3bd3b9a4bc64a468192798cbfd12b16 schema:issueNumber 1
71 rdf:type schema:PublicationIssue
72 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
73 schema:name Information and Computing Sciences
74 rdf:type schema:DefinedTerm
75 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
76 schema:name Artificial Intelligence and Image Processing
77 rdf:type schema:DefinedTerm
78 sg:journal.1038561 schema:issn 1687-5176
79 1687-5281
80 schema:name EURASIP Journal on Image and Video Processing
81 rdf:type schema:Periodical
82 sg:person.010362630004.59 schema:affiliation https://www.grid.ac/institutes/grid.260567.0
83 schema:familyName Lin
84 schema:givenName Kao-Min
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010362630004.59
86 rdf:type schema:Person
87 sg:person.011274470065.56 schema:affiliation https://www.grid.ac/institutes/grid.260567.0
88 schema:familyName Chen
89 schema:givenName Mei-Juan
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011274470065.56
91 rdf:type schema:Person
92 sg:person.012601364054.50 schema:affiliation https://www.grid.ac/institutes/grid.260567.0
93 schema:familyName Lee
94 schema:givenName Cheng-An
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012601364054.50
96 rdf:type schema:Person
97 sg:person.015742036201.49 schema:affiliation https://www.grid.ac/institutes/grid.260567.0
98 schema:familyName Lin
99 schema:givenName Jie-Ru
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015742036201.49
101 rdf:type schema:Person
102 sg:person.07753245671.16 schema:affiliation https://www.grid.ac/institutes/grid.412036.2
103 schema:familyName Yeh
104 schema:givenName Chia-Hung
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07753245671.16
106 rdf:type schema:Person
107 sg:pub.10.1186/1687-5281-2013-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023531200
108 https://doi.org/10.1186/1687-5281-2013-4
109 rdf:type schema:CreativeWork
110 sg:pub.10.1186/s13640-016-0159-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074198548
111 https://doi.org/10.1186/s13640-016-0159-9
112 rdf:type schema:CreativeWork
113 sg:pub.10.1186/s13640-017-0226-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1092819400
114 https://doi.org/10.1186/s13640-017-0226-x
115 rdf:type schema:CreativeWork
116 sg:pub.10.1186/s13640-017-0237-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099680932
117 https://doi.org/10.1186/s13640-017-0237-7
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1049/el.2014.0451 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056755096
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1049/el.2015.3094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056757036
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1109/apsipa.2014.7041657 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094899675
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1109/icce-tw.2015.7216916 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095291706
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1109/ist.2015.7294566 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094505255
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1109/ivmspw.2013.6611927 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095732644
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1109/jstsp.2013.2271975 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061338299
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1109/tbc.2014.2321682 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061522372
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1109/tbc.2015.2505406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061522489
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1109/tbc.2017.2722239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090973104
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1109/tcsvt.2003.815165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061574449
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1109/tcsvt.2012.2221191 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061576017
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1109/tcsvt.2012.2223051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061576033
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1109/tcsvt.2014.2313892 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061576295
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1109/tcsvt.2014.2360031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061576396
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1587/transfun.e95.a.1215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068090510
150 rdf:type schema:CreativeWork
151 https://www.grid.ac/institutes/grid.260567.0 schema:alternateName National Dong Hwa University
152 schema:name Department of Electrical Engineering, National Dong Hwa University, Hualien, Taiwan
153 rdf:type schema:Organization
154 https://www.grid.ac/institutes/grid.412036.2 schema:alternateName National Sun Yat-sen University
155 schema:name Department of Electrical Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan
156 Department of Electrical Engineering, National Taiwan Normal University, Taipei, Taiwan
157 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...