High performance and low complexity decoding light-weight video coding with motion estimation and mode decision at decoder View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-05-22

AUTHORS

Ted Chih-Wei Lei, Fan-Shuo Tseng

ABSTRACT

Light-weight video coding (LVC) follows distributed video coding (DVC) and designs to move computational complexity from the encoder to the decoder, thus making a low computational complexity encoder. In traditional video coding, the high computational complexity encoder algorithms, where motion estimation and mode decision, are the main transferred objects. In order to alleviate the computational burden, the proposed architecture adopts the Partial Boundary Matching Algorithm (PBMA) and four flexible types of mode decision at the decoder; this circumvents the traditional use of motion estimation and mode decision at the encoder. In simulation, the proposed architecture, Padding Block-based LVC, not only outperforms the state-of-the-art DVC (DISCOVER) codec by up to 4~5 dB but also significantly decreases decoder complexity to approximately one hundred times lower than that of the DISCOVER codec. More... »

PAGES

37

References to SciGraph publications

  • 2004-11. Distinctive Image Features from Scale-Invariant Keypoints in INTERNATIONAL JOURNAL OF COMPUTER VISION
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s13640-017-0181-6

    DOI

    http://dx.doi.org/10.1186/s13640-017-0181-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1085566329


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "The Electrical Engineering Department of National Sun Yat-sen University, 70 Lienhai Rd., 80424, Kaohsiung, Taiwan, Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.412036.2", 
              "name": [
                "The Electrical Engineering Department of National Sun Yat-sen University, 70 Lienhai Rd., 80424, Kaohsiung, Taiwan, Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lei", 
            "givenName": "Ted Chih-Wei", 
            "id": "sg:person.010044162411.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010044162411.03"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "The Institute of Communication Engineering of National Sun Yat-sen University, 70 Lienhai Rd, 80424, Kaohsiung, Taiwan, Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.412036.2", 
              "name": [
                "The Institute of Communication Engineering of National Sun Yat-sen University, 70 Lienhai Rd, 80424, Kaohsiung, Taiwan, Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tseng", 
            "givenName": "Fan-Shuo", 
            "id": "sg:person.016552553745.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016552553745.25"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1023/b:visi.0000029664.99615.94", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052687286", 
              "https://doi.org/10.1023/b:visi.0000029664.99615.94"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-05-22", 
        "datePublishedReg": "2017-05-22", 
        "description": "Light-weight video coding (LVC) follows distributed video coding (DVC) and designs to move computational complexity from the encoder to the decoder, thus making a low computational complexity encoder. In traditional video coding, the high computational complexity encoder algorithms, where motion estimation and mode decision, are the main transferred objects. In order to alleviate the computational burden, the proposed architecture adopts the Partial Boundary Matching Algorithm (PBMA) and four flexible types of mode decision at the decoder; this circumvents the traditional use of motion estimation and mode decision at the encoder. In simulation, the proposed architecture, Padding Block-based LVC, not only outperforms the state-of-the-art DVC (DISCOVER) codec by up to 4~5\u00a0dB but also significantly decreases decoder complexity to approximately one hundred times lower than that of the DISCOVER codec.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s13640-017-0181-6", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1038561", 
            "issn": [
              "1687-5176", 
              "1687-5281"
            ], 
            "name": "EURASIP Journal on Image and Video Processing", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2017"
          }
        ], 
        "keywords": [
          "video coding", 
          "mode decision", 
          "motion estimation", 
          "traditional video coding", 
          "art DVC (DISCOVER) codec", 
          "boundary matching algorithm", 
          "DISCOVER codec", 
          "DVC codec", 
          "computational complexity", 
          "matching algorithm", 
          "encoder", 
          "computational burden", 
          "low complexity", 
          "decoder", 
          "coding", 
          "codec", 
          "high performance", 
          "architecture", 
          "complexity", 
          "video", 
          "decisions", 
          "flexible type", 
          "algorithm", 
          "estimation", 
          "objects", 
          "performance", 
          "simulations", 
          "block", 
          "order", 
          "time", 
          "use", 
          "state", 
          "types", 
          "burden", 
          "traditional use"
        ], 
        "name": "High performance and low complexity decoding light-weight video coding with motion estimation and mode decision at decoder", 
        "pagination": "37", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1085566329"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s13640-017-0181-6"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s13640-017-0181-6", 
          "https://app.dimensions.ai/details/publication/pub.1085566329"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-11-24T21:02", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_732.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s13640-017-0181-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13640-017-0181-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13640-017-0181-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13640-017-0181-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13640-017-0181-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    105 TRIPLES      21 PREDICATES      60 URIs      51 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s13640-017-0181-6 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N015a78d9023c41d5894aea4b2f5f205f
    4 schema:citation sg:pub.10.1023/b:visi.0000029664.99615.94
    5 schema:datePublished 2017-05-22
    6 schema:datePublishedReg 2017-05-22
    7 schema:description Light-weight video coding (LVC) follows distributed video coding (DVC) and designs to move computational complexity from the encoder to the decoder, thus making a low computational complexity encoder. In traditional video coding, the high computational complexity encoder algorithms, where motion estimation and mode decision, are the main transferred objects. In order to alleviate the computational burden, the proposed architecture adopts the Partial Boundary Matching Algorithm (PBMA) and four flexible types of mode decision at the decoder; this circumvents the traditional use of motion estimation and mode decision at the encoder. In simulation, the proposed architecture, Padding Block-based LVC, not only outperforms the state-of-the-art DVC (DISCOVER) codec by up to 4~5 dB but also significantly decreases decoder complexity to approximately one hundred times lower than that of the DISCOVER codec.
    8 schema:genre article
    9 schema:isAccessibleForFree true
    10 schema:isPartOf N47f733dae9b54388bb5a0aaf7b5f18ef
    11 Ndb6340970b484be3979a66ec3f91c963
    12 sg:journal.1038561
    13 schema:keywords DISCOVER codec
    14 DVC codec
    15 algorithm
    16 architecture
    17 art DVC (DISCOVER) codec
    18 block
    19 boundary matching algorithm
    20 burden
    21 codec
    22 coding
    23 complexity
    24 computational burden
    25 computational complexity
    26 decisions
    27 decoder
    28 encoder
    29 estimation
    30 flexible type
    31 high performance
    32 low complexity
    33 matching algorithm
    34 mode decision
    35 motion estimation
    36 objects
    37 order
    38 performance
    39 simulations
    40 state
    41 time
    42 traditional use
    43 traditional video coding
    44 types
    45 use
    46 video
    47 video coding
    48 schema:name High performance and low complexity decoding light-weight video coding with motion estimation and mode decision at decoder
    49 schema:pagination 37
    50 schema:productId N892d54d3bcec4ef89f8d3557cc79556e
    51 Nccd4c8ebab6b4702b2408fc3ac62ee0d
    52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085566329
    53 https://doi.org/10.1186/s13640-017-0181-6
    54 schema:sdDatePublished 2022-11-24T21:02
    55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    56 schema:sdPublisher Nbaa0dd90a4a145878db0d3f61c974206
    57 schema:url https://doi.org/10.1186/s13640-017-0181-6
    58 sgo:license sg:explorer/license/
    59 sgo:sdDataset articles
    60 rdf:type schema:ScholarlyArticle
    61 N015a78d9023c41d5894aea4b2f5f205f rdf:first sg:person.010044162411.03
    62 rdf:rest N82071875c5e94e17a2b23dc291985fde
    63 N47f733dae9b54388bb5a0aaf7b5f18ef schema:issueNumber 1
    64 rdf:type schema:PublicationIssue
    65 N82071875c5e94e17a2b23dc291985fde rdf:first sg:person.016552553745.25
    66 rdf:rest rdf:nil
    67 N892d54d3bcec4ef89f8d3557cc79556e schema:name dimensions_id
    68 schema:value pub.1085566329
    69 rdf:type schema:PropertyValue
    70 Nbaa0dd90a4a145878db0d3f61c974206 schema:name Springer Nature - SN SciGraph project
    71 rdf:type schema:Organization
    72 Nccd4c8ebab6b4702b2408fc3ac62ee0d schema:name doi
    73 schema:value 10.1186/s13640-017-0181-6
    74 rdf:type schema:PropertyValue
    75 Ndb6340970b484be3979a66ec3f91c963 schema:volumeNumber 2017
    76 rdf:type schema:PublicationVolume
    77 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    78 schema:name Information and Computing Sciences
    79 rdf:type schema:DefinedTerm
    80 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    81 schema:name Artificial Intelligence and Image Processing
    82 rdf:type schema:DefinedTerm
    83 sg:journal.1038561 schema:issn 1687-5176
    84 1687-5281
    85 schema:name EURASIP Journal on Image and Video Processing
    86 schema:publisher Springer Nature
    87 rdf:type schema:Periodical
    88 sg:person.010044162411.03 schema:affiliation grid-institutes:grid.412036.2
    89 schema:familyName Lei
    90 schema:givenName Ted Chih-Wei
    91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010044162411.03
    92 rdf:type schema:Person
    93 sg:person.016552553745.25 schema:affiliation grid-institutes:grid.412036.2
    94 schema:familyName Tseng
    95 schema:givenName Fan-Shuo
    96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016552553745.25
    97 rdf:type schema:Person
    98 sg:pub.10.1023/b:visi.0000029664.99615.94 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052687286
    99 https://doi.org/10.1023/b:visi.0000029664.99615.94
    100 rdf:type schema:CreativeWork
    101 grid-institutes:grid.412036.2 schema:alternateName The Electrical Engineering Department of National Sun Yat-sen University, 70 Lienhai Rd., 80424, Kaohsiung, Taiwan, Republic of China
    102 The Institute of Communication Engineering of National Sun Yat-sen University, 70 Lienhai Rd, 80424, Kaohsiung, Taiwan, Republic of China
    103 schema:name The Electrical Engineering Department of National Sun Yat-sen University, 70 Lienhai Rd., 80424, Kaohsiung, Taiwan, Republic of China
    104 The Institute of Communication Engineering of National Sun Yat-sen University, 70 Lienhai Rd, 80424, Kaohsiung, Taiwan, Republic of China
    105 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...